

Autism Classification Using Topological Features and Deep Learning - A Cautionary Tale

Archit Rathore¹, Sourabh Palande¹, Jeffrey S. Anderson¹, Brandon A. Zielinski¹, P. Thomas Fletcher², and Bei Wang¹ ¹University of Utah ²University of Virginia

*This work was supported in part by NSF IIS 1513616 and NIH R01EB022876

Overview

- Explore utility of topological features in ASD classification using rs-fMRI
- Topological features represented as:
- Persistence Diagrams (PD), Persistence Images (PI) and Persistence Landscapes (PL)
- Classification using SVMs, random forests and neural networks
- Augmenting topological features with functional correlations provides best accuracy
- Evaluate statistical significance of improvement in accuracy using permutation test
- Improvement in classification accuracy due to topological features is not always statistically significant

Method

- Flattened correlation matrix mapped as vector inputs for a branch of the network
- Persistence diagrams are passed through *projection layer* as described by Hofer et al [1]
- Projection layer maps persistence diagrams to vector space
- Experiments with 3, 5 and 7 layered networks

- A cautionary tale to the practitioners regarding the limited discriminative power of topological features derived from fMRI data for the classification of autism.

Dataset and Preprocessing

- Craddock 200 (CC200), Craddock 400 (CC400) from ABIDE Preprocessed dataset
- 505 ASD and 530 typically developing control (TDC) subjects
- 200×200 or 400×400 connectivity matrices per subject (Pearson correlation)
- Map connectivity matrix M to point cloud X with pairwise distance d_X

 $d_X(x,y) = \sqrt{1 - M(x,y)}$

Persistent Homology

- Measures the evolution of topological features across varying scale (α)
- Topological features: dim-0 (connected components), dim-1 (tunnels), dim-2 (voids)
- As α changes, birth (b) and death (d) of features is tracked
- Represented as Barcodes or PDs. PIs, PLs Derived from PDs

Figure 2: Neural network architecture that combines correlation and topological features

• Projection layer:
$$S_{\mu,\sigma,\nu} = \sum_{(x,y)\in\rho(A)} s_{\mu,\sigma,\nu}(x,y)$$
, where
 $s_{\mu,\sigma,\nu}(x,y) = \begin{cases} e^{-\sigma_x^2(x-\mu_x)^2 - \sigma_y^2(y-\mu_y)^2} & y \in [\nu,\infty) \\ e^{-\sigma_x^2(x-\mu_x)^2 - \sigma_y^2(\ln\frac{y}{\nu} + \nu - \mu_y)^2} & y \in (0,\nu) \\ 0, & y = 0 \end{cases}$

- $(x, y) = (death + birth, death birth) \pi/4$ rotation of PD
- μ and σ learned parameters assigning importance to different regions of the diagram
- Compare the above model with SVM and Random Forest on correlation features
- Kernel-SVM defined on PD persistence scale space kernel [2]. PL and PI are vector

• Space of PDs can be endowed with distance metrics, kernels

Figure 1: Computing persistent homology of a point cloud in \mathbb{R}^2

representations and directly usable with SVM and random forests

Results

Model	CC200	CC400	Model	CC200	CC400	Model	CC200	CC400
SVM_{Corr}	65.41	66.33	-	-	-	-	-	-
RF_{Corr}	64.81	63.92	-	-	-	-	-	-
$NN3_{Corr}$	68.35	63.92	-	-	-	-	-	-
$NN5_{Corr}$	68.46	65.58	-	-	-	-	-	-
$NN7_{Corr}$	67.10	62.06	-	-	-	-	-	-
SVM_{PD}	53.03	53.69	SVM_{PI}	54.54	53.76	SVM_{PL}	53.03	53.69
RF_{PD}	-	-	RF_{PI}	52.25	53.04	RF_{PL}	52.51	53.12
$NN3_{PD}$	56.06	55.90	$NN3_{PI}$	58.56	56.10	$NN3_{PL}$	55.36	54.24
$NN5_{PD}$	56.15	56.04	$NN5_{PI}$	59.09	57.39	$NN5_{PL}$	55.18	55.72
$NN7_{PD}$	55.48	54.33	$NN7_{PI}$	56.75	55.58	$NN7_{PL}$	54.85	53.67
$SVM_{PD+Corr}$	65.86	63.36	$SVM_{PI+Corr}$	64.25	62.68	$SVM_{PL+Corr}$	65.65	64.12
$\mathbf{NN3}_{PD+Corr}$	69.19	67.84	$\mathbf{NN3}_{PI+Corr}$	67.2	67.02	$\mathbf{NN3}_{PL+Corr}$	68.5	66.76
$NN5_{PD+Corr}$	68.20	66.03	$NN5_{PI+Corr}$	66.87	66.23	$NN5_{PL+Corr}$	67.45	66.48
$NN7_{PD+Corr}$	64.47	61.25	$NN7_{PI+Corr}$	65.10	64.16	$NN7_{PL+Corr}$	67.02	65.26

Figure 3: Mean classification accuracy using various classifiers and feature combinations

	RF_{Corr}	SVM_{Corr}	$SVM_{PD+Corr}$	$NN3_{Corr}$
SVM_{Corr}	0.1502			
$SVM_{PD+Corr}$	0.1943	0.4213		
$NN3_{Corr}$	0.0461	0.0480	0.0631	
$NN3_{PD+Corr}$	0.0406	0.0446	0.0414	0.1894

Correlation Matrix

Persistence Diagram

Persistence Image

Conclusions

- Modest improvement in classification on combining topological and correlation features
- Topological features capture some information that is not captured by correlations
- Results affected by heterogeneity of ASD, fMRI acquisition strategy

	RF_{Corr}	SVM_{Corr}	$SVM_{PI+Corr}$	$NN3_{Corr}$
$SVM_{PI+Corr}$	0.1943	0.4213		
NN3 _{Corr}	-	-	0.0420	
$NN3_{PI+Corr}$	0.0493	0.0763	0.0734	0.7432
	BFarm	SVM	SVM	NN3a
	Let Corr	D V WICorr	S V IVI PL+Corr	1 OCorr
$SVM_{PL+Corr}$	0.1623	0.3513	S V MPL+Corr	1110Corr
$\frac{\text{SVM}_{PL+Corr}}{\text{NN3}_{Corr}}$	0.1623 -	0.3513 -	0.0581	ININGCorr

Figure 4: Statistical significance of improvements in classification accuracy, comparing each row method against each column method, captured by p-values

References

[1] Christoph Hofer et al. "Deep learning with topological signatures". In: Advances in Neural Information Processing Systems (2017), pp. 1634–1644.

[2] Jan Reininghaus et al. "A Stable Multi-Scale Kernel for Topological Machine Learning". In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2015), pp. 4741–4748.