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Overview

e Explore utility of topological features in ASD classification using rs-fMRI
e Topological features represented as:
— Persistence Diagrams (PD), Persistence Images (PI) and Persistence Landscapes (PL)
e (lassification using SVMs, random forests and neural networks
e Augmenting topological features with tunctional correlations provides best accuracy
e Lvaluate statistical significance of improvement in accuracy using permutation test

e Improvement in classification accuracy due to topological features is not always statisti-
cally significant

e A cautionary tale to the practitioners regarding the limited discrim-
inative power of topological features derived from fMRI data for the
classification of autism.

Dataset and Preprocessing

e Craddock 200 (CC200), Craddock 400 (CC400) from ABIDE Preprocessed dataset
e 505 ASD and 530 typically developing control (TDC) subjects
e 200 x 200 or 400 x 400 connectivity matrices per subject (Pearson correlation)

e Map connectivity matrix M to point cloud X with pairwise distance dx

dX(ajvy) — \/1 o M(ZE,y)

Persistent Homology

e Measures the evolution of topological features across varying scale («)

e Topological features: dim-0 (connected components), dim-1 (tunnels), dim-2 (voids)
e As « changes, birth (b) and death (d) of features is tracked

e Repressented as Barcodes or PDs. Pls, PLs Derived from PDs

e Space of PDs can be endowed with distance metrics, kernels

t= t= t= t= t= t=4.2 t=5 t=5.6

Correlation Matrix Persistence Diagram Persistence Landscape Persistence Image

Conclusions

e Modest improvement in classification on combining topological and correlation features
e Topological features capture some information that is not captured by correlations

e Results affected by heterogeneity of ASD, tMRI acquisition strategy
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Method

e Flattened correlation matrix mapped as vector inputs for a branch of the network
e Persistence diagrams are passed through projection layer as described by Hofer et al [1]
e Projection layer maps persistence diagrams to vector space

e [ixperiments with 3, 5 and 7 layered networks
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Figure 2: Neural network architecture that combines correlation and topological features

e Projection layer: Syou = 3, epa) Smwow(®;y), Where
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o (x,y) = (death + birth,death — birth) - w/4 rotation of PD
e 11 and o - learned parameters assigning importance to different regions of the diagram
e Compare the above model with SVM and Random Forest on correlation features

o Kernel-SVM defined on PD - persistence scale space kernel [2]. PL and PI are vector

representations and directly usable with SVM and random forests

Results
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Figure 3: Mean classification accuracy using various classifiers and feature combinations
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Figure 4: Statistical significance of improvements in classification accuracy, comparing each row method
against each column method, captured by p-values
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