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Overview

• Explore utility of topological features in ASD classification using rs-fMRI

• Topological features represented as:

– Persistence Diagrams (PD), Persistence Images (PI) and Persistence Landscapes (PL)

• Classification using SVMs, random forests and neural networks

• Augmenting topological features with functional correlations provides best accuracy

• Evaluate statistical significance of improvement in accuracy using permutation test

• Improvement in classification accuracy due to topological features is not always statisti-
cally significant

• A cautionary tale to the practitioners regarding the limited discrim-
inative power of topological features derived from fMRI data for the
classification of autism.

Dataset and Preprocessing

• Craddock 200 (CC200), Craddock 400 (CC400) from ABIDE Preprocessed dataset

• 505 ASD and 530 typically developing control (TDC) subjects

• 200× 200 or 400× 400 connectivity matrices per subject (Pearson correlation)

• Map connectivity matrix M to point cloud X with pairwise distance dX

dX(x, y) =
√

1−M(x, y)

Persistent Homology

• Measures the evolution of topological features across varying scale (α)

• Topological features: dim-0 (connected components), dim-1 (tunnels), dim-2 (voids)

• As α changes, birth (b) and death (d) of features is tracked

• Repressented as Barcodes or PDs. PIs, PLs Derived from PDs

• Space of PDs can be endowed with distance metrics, kernels

Figure 1: Computing persistent homology of a point cloud in R2
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Conclusions

• Modest improvement in classification on combining topological and correlation features

• Topological features capture some information that is not captured by correlations

• Results affected by heterogeneity of ASD, fMRI acquisition strategy

Method

• Flattened correlation matrix mapped as vector inputs for a branch of the network

• Persistence diagrams are passed through projection layer as described by Hofer et al [1]

• Projection layer maps persistence diagrams to vector space

• Experiments with 3, 5 and 7 layered networks

Figure 2: Neural network architecture that combines correlation and topological features

• Projection layer: Sµ,σ,ν =
∑

(x,y)∈ρ(A) sµ,σ,ν(x, y), where

sµ,σ,ν(x, y) =
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ν+ν−µy)2 y ∈ (0, ν)

0, y = 0

• (x, y) = (death + birth, death− birth) - π/4 rotation of PD

• µ and σ - learned parameters assigning importance to different regions of the diagram

• Compare the above model with SVM and Random Forest on correlation features

• Kernel-SVM defined on PD - persistence scale space kernel [2]. PL and PI are vector
representations and directly usable with SVM and random forests

Results

Figure 3: Mean classification accuracy using various classifiers and feature combinations

Figure 4: Statistical significance of improvements in classification accuracy, comparing each row method
against each column method, captured by p-values
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