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Abstract
Deep neural networks such as GoogLeNet, ResNet, and BERT have achieved impressive performance in tasks such as image
and text classification. To understand how such performance is achieved, we probe a trained deep neural network by studying
neuron activations, i.e., combinations of neuron firings, at various layers of the network in response to a particular input. With
a large number of inputs, we aim to obtain a global view of what neurons detect by studying their activations. In particular, we
develop visualizations that show the shape of the activation space, the organizational principle behind neuron activations, and
the relationships of these activations within a layer. Applying tools from topological data analysis, we present TopoAct, a visual
exploration system to study topological summaries of activation vectors. We present exploration scenarios using TopoAct that
provide valuable insights into learned representations of neural networks. We expect TopoAct to give a topological perspective
that enriches the current toolbox of neural network analysis, and to provide a basis for network architecture diagnosis and data
anomaly detection.

CCS Concepts
• Human-centered computing → Visualization toolkits; • Computing methodologies → Learning latent representations;

1. Introduction

Deep convolutional neural networks (CNNs) have become ubiq-
uitous in image classification tasks thanks to architectures such
as GoogLeNet and ResNet. Meanwhile, transformer-based models
such as BERT are now the state-of-the-art language model for text
classification. However, we do not quite understand how these net-
works achieve their impressive performance. One main challenge
in deep learning is interpretability: How can we make the repre-
sentations learned by these networks interpretable to humans?

Given a trained deep neural network, we address the inter-
pretability issue by probing neuron activations, i.e., the combina-
tions of neurons firings, in response to a particular input image.
With a large number of input images for a CNN, we can obtain a
global view of what the neurons have learned by studying neuron
activations in a particular layer. We aim to address the following
questions: What is the shape of the activation space? What is the
organizational principle behind neuron activations? And how are
the activations related within a layer and across layers? We propose
to leverage tools from topological data analysis (TDA) to capture
global and local patterns of how a trained network reacts to a large
number of input images. In this work:

• We present TopoAct, an interactive visual analytics system that
uses topological summaries to explore the space of activations
in deep learning classifiers for a fixed layer of the network.
TopoAct leverages the mapper construction [SMC07] from TDA

to capture the overall shape of activation vectors for interactive
exploration.

• We present exploration scenarios where TopoAct helps us dis-
cover valuable, sometimes surprising, insights into learned rep-
resentations of image classifiers such as InceptionV1 [SLJ∗15]
and ResNet [HZRS16].

• We observe structures in the topological summaries, specifically
branches and loops, that correspond to evolving activation pat-
terns that help us understand how a neural network reacts to a
large group of images. In particular, we find a correlation be-
tween semantically meaningful distinctions and topological sep-
arations among images from different classes.

• We further demonstrate the generality and utility of TopoAct by
applying it to activation vectors obtained from text classifiers
such as the BERT family of models. Via a collaboration with
a machine learning expert, we provide concrete use cases in the
wild where TopoAct reveals syntactic and semantic regularities
within layers of BERT that help with hypothesis generation in
natural language processing (NLP).

Finally, we release an open-source, web-based implementation of
the exploration interface on Github: https://github.com/
tdavislab/TopoAct/; the current system is also available
via a public demo link: https://tdavislab.github.io/
TopoAct/.

We expect TopoAct to benefit the analysis and visualization of
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neural networks by providing researchers and practitioners the abil-
ity to probe black box neural networks from a novel topological
perspective.

• To the best of our knowledge, TopoAct is the first tool that fo-
cuses on exploring complex topological structures – branches
and loops – within the space of activation vectors. Its exploratory
nature helps to inform the global and local organizational princi-
ples of activation vectors across different scales.

• TopoAct detects if and when activations from different classes
become separated, via branches in a fixed layer (see section 6,
and in particular, the deer-horse example in section 7), which
may be used to inform diagnostic or corrective actions such as
selective data augmentation for misclassified inputs or network
layer modification for increasing the separation between con-
founding classes (see section 9).

2. Related Work

We review visual analytics systems for deep learning interpretabil-
ity as well as various notions of topological summaries.

Visual analytics systems. Visual analytics systems have been used
to support model explanation, interpretation, debugging, and im-
provement for deep learning in recent years; see [HKPC18] for a
survey. Here we focus on approaches based on neuron activations
for interpretability in deep learning. This line of research attempts
to explain the internal operations and the behavior of deep neural
networks by visualizing the features learned by hidden units of the
network. Erhan et al. proposed activation maximization [EBCV09],
which uses gradient ascent to find the input image that maximizes
the activation of the neuron under investigation. It has been used
to visualize the hidden layers of a deep belief network [EBCV09]
and deep auto-encoders [LRM∗13]. Simonyan et al. [SVZ14] used
a similar gradient-based approach to obtain salience maps by pro-
jecting neuron activations from the fully connected layers of the
CNN back on to the input space. Building on the idea of activa-
tion maximization, Zieler et al. [ZF14] proposed a deconvolutional
network that reconstructs the input of convolutional layers from its
output. Yosinski et al. [YCN∗15] introduced the DeepVis frame-
work that visualizes the live activations produced on each layer of a
CNN as it processes images/videos. Their framework also enabled
visualizing features in each layer via regularized optimization.

These methods assume that each neuron specializes in learning
one specific type of feature. However, the same neuron can be ac-
tivated in response to vastly different types of input images. Re-
constructing a single feature visualization, in such cases, leads to
an unintelligible mix of color, scales or parts of objects. To address
this issue, Nguyen et al. [NYC16] proposed multifaceted feature vi-
sualization, which synthesizes a visualization of each type of input
image that activates a neuron. Another problem with these visual-
ization approaches is the assumption that neurons operate in isola-
tion. This problem is addressed by the model inversion method pro-
posed by Mahendran et al. [MV15, MV16]. Model inversion looks
at the representations learned by the fully connected layers of a
CNN, and reconstructs the input from these representations. Kim
et al. introduced the TCAV (Testing with Concept Activation Vec-
tors) framework, which uses directional derivatives of activations to

quantify the sensitivity of model predictions to an underlying high-
level concept [KWG∗18]. All these techniques can help us under-
stand how a single input or a single class of inputs is “seen" by the
network, but visualizing activations of neurons alone is somewhat
limited in explaining the global behavior of the network. To obtain
a global picture of the network, Karpathy [Kar14] used t-SNE to
arrange input images that have similar CNN codes (i.e., fc7 CNN
features) nearby in the embedding. Nguyen et al. [NYC16] pro-
jected the training set images that maximally activate a neuron into
a low-dimensional space, also via t-SNE. They clustered the im-
ages using k-means in the embedded space, and computed a mean
image by averaging the images nearest to the cluster centroid.

Carter et al. recently proposed the activation atlas [CAS∗19],
which combines feature visualization with dimensionality reduc-
tion (DR) to visualize averaged activation vectors with respect to
millions of input images. For a fixed layer, the activation atlas ob-
tains a high-dimensional activation vector corresponding to each
input image. These high-dimensional vectors are then projected
onto low-dimensional space via UMAP [MHM18, MHSG18] or t-
SNE [MH08]. Finally, feature visualization is applied to averaged
activation vectors from small patches of the low-dimensional em-
bedding that allow users to intuitively understand how a particular
layer reacts to millions of input images. Hohman et al. proposed
SUMMIT [HPRC20], another framework that summarizes neuron
activations of an entire layer of a deep CNN using DR. In addition
to aggregated activations, SUMMIT also computes neuron influ-
ences to construct an attribution graph, which captures relation-
ships between neurons across layers.

Activation atlas computes average activation vectors in a low-
dimensional embedding, which may introduce errors due to neigh-
borhood distortions. In comparison, our approach aggregates acti-
vation vectors in a different manner. Using the mapper construc-
tion, a tool from TDA, we obtain a topological summary of a par-
ticular layer by preserving the clusters as well as relationships be-
tween the clusters in the original high-dimensional activation space.
Our approach preserves more neighborhood structures since the
topological summary is obtained within the high-dimensional ac-
tivation space. We then study how a particular layer of the neural
network reacts to a large number of images through the lens of this
topological summary.

Various notions of topological summaries. In TDA, various no-
tions of topological summaries have been proposed to understand
and characterize the structure of a scalar function f :X→R defined
on some topological space X. Some of these, such as merge trees,
contour trees [CSA03], and Reeb graphs [Ree46], capture the be-
havior of the (sub)level sets of a function. Others, including Morse
complexes and the Morse-Smale complexes [EHZ03,EHNP03], fo-
cus on the behavior of the gradients of a function. Fewer topolog-
ical summaries are applicable for a vector-valued function, includ-
ing Jacobi sets [EH02, BWN∗15], Reeb spaces [EHP08, MW16],
and their discrete variant, the mapper construction [SMC07]. In
this paper, we apply the mapper construction to the study of the
space of activations to generate topological summaries suitable
for interactive visualization. The mapper construction introduced
by Singh et al. [SMC07] has seen widespread applications in
data science, including cancer research [NLC11, MNL∗19], sports
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analytics [Ala12], gene expression analysis [JCR∗19], micro-
epidemiology [KGCFR∗20], genomic profiling [CZJ∗19], and neu-
roscience [GSPS19, SSGC∗18], to name a few; see [PVP17] for
an overview. In visualization, topological approaches such as per-
sistent homology and mapper have recently been applied in graph
visualization [HWR18, HWSR18, SHW∗20].

3. Comparison with t-SNE and UMAP

Various dimensionality reduction (DR) techniques have been pro-
posed to analyze and visualize high-dimensional point cloud
data [Cay08, LMW∗17]. Among these, t-SNE [MH08] and
UMAP [MHM18] are most relevant to our proposed work as they
have been used previously for exploring neuron activations [Kar14,
NYC16, CAS∗19]. In particular, Carter et al. [CAS∗19] employ
both t-SNE and UMAP to project high-dimensional activation vec-
tors to low-dimensions for visual exploration. In comparison with
t-SNE and UMAP, the benefit of TopoAct is two-fold.

• TopoAct provides a global, graph-based representation of the
space of activations, which explicitly summarizes the organiza-
tional principles (clusters and cluster relations) behind neuron
activations. t-SNE and UMAP detect structures visible in the
low-dimensional embedding, whereas TopoAct captures com-
plex topological structures – loops and branches – in the original
high-dimensional space.

• Whereas t-SNE and UMAP focus on preserving proximities
within local neighborhoods, TopoAct explicitly reveals branches
and loops that are not necessarily visible via t-SNE/UMAP.
These topological structures can be used to guide refined, local
structural analysis (section 6).

The kNN (k-nearest neighbor) graph constructed by UMAP can be
considered as a topological representation of the high-dimensional
data [MHM18]. However, it only approximately preserves the con-
nectivity among points within local patches of the manifold, and
does not capture structures such as loops or branches. TopoAct ad-
dresses this important challenge by utilizing the mapper construc-
tion.

In addition, several DR techniques have been developed re-
cently [SMVJ09,WSPVJ11,YZR∗18] that explicitly preserve loops
and branches; however, none of them give a global summary of all
such structures in a single visualization. In studying the shape of
the space of images, Lee et al. [LPM03], Carlsson et al. [CISZ08],
and Xia [Xia16] studied the global topological structures of patches
from natural images; they used different topological tools (such
as persistence homology) and focused on different data problems
(such as studying the global structure of natural images from a
database) in comparison to TopoAct. Finally, a few recent works
applied topological techniques in the study of activations. Geb-
hart et al. [GSH19] computed persistent homology over the acti-
vation structure of neural networks. In particular, they character-
ized the topological structure of the neural network architecture
when viewed as a graph with edge weights provided by activations.
Gabella et al. [GAES19] used both persistent homology and the
mapper construction to study the parameter space of neural net-
works (i.e., weight matrices) during training.

4. Technical Background

We review technical background on the mapper construction and
neural network architecture. We delay the discussions on activation
vectors and feature visualization until section 5.

Mapper graph on point cloud data. We give a high-level descrip-
tion of the framework by Singh et al. [SMC07] in a point cloud set-
ting. Given a high-dimensional point cloud X⊂ Rd equipped with
a function f on X, f : X → R, the mapper construction provides
a topological summary of the data for compact representation and
exploration. It utilizes the topological concept known as the nerve
of a covering [Ale28].

An open cover of X is a collection U = {Ui}i∈I of open sets in
Rd with an index set I such that X ⊂ �

i∈I Ui. Given a cover U of
X, the 1-dimensional nerve of U , denoted as N1(U), is constructed
as follows: A finite set {i, j} ⊂ I (i.e., an edge) belongs to N1(U)
if and only if the intersection of Ui and Uj is nonempty; if the set
{i, j} belongs to N1(U), then any of its subsets (i.e., the point i and
the point j) is also in N1(U). See Figure 1 for an example. A cover
U = {U1,U2,U3,U4} that contains open rectangles is given for a
2-dimesional point cloud X in (a). The 1-dimensional nerve of U ,
N1(U), is shown in (c). For instance, there is an edge {1,2} that
belongs to N1(U) since U1 ∩U2 �= ∅.
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Figure 1: A simple example of a mapper graph on a point cloud.

For the mapper construction, we start with a finite cover V =
{Vj} j∈J (J being an index set) of the image f (X) ⊂ R of f , such
that f (X)⊆�

j Vj, see Figure 1(b). Since f is a scalar function, Vi is
an open interval in R. Let U denote the cover of X obtained by con-
sidering the clusters of points induced by points in f−1(Vj) for each
j, see (d). The 1-dimensional nerve of U , denoted as M :=N1(U),
is called the mapper graph of (X, f ). M is a multiscale represen-
tation that serves as a topological summary of of (X, f ), i.e., the
point cloud X equipped with a function f . Its construction relies
on three parameters: the function f , the cover V , and the clustering
algorithm.

The function f plays the role of a lens, through which we look at
the data, and different lenses provide different insights [BGSF08,
SMC07]. An interesting open problem for the mapper construction
is how to define topological lenses beyond best practices or a rule of
thumb [BGSF08, BMMP03]. In practice, functions such as height,
distance from the barycenter, surface curvature, integral geodesic
distances, and geodesic distances from a source point have all been
used as lenses [BGSF08]. In this paper, we use the L2 norm of the
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activation vectors as the lens, although other options are possible
(see the supplementary material for a discussion of L2-norm as a
lens function).

The cover V of f (X) consists of a finite number of open intervals
as cover elements, V = {Vj} j∈J . A common strategy is to use uni-
formly sized overlapping intervals. Let n be the number of intervals
and p the amount of overlap between adjacent intervals. Adjusting
these parameters increases or decreases the amount of aggregation
M provides.

We compute the clustering of the points lying within f−1(Vi)
and connect the clusters whenever they have nonempty intersec-
tion. A typical algorithm to use is DBSCAN [EKSX96], a density-
based clustering algorithm; it groups points in high-density regions
together and makes points that lie alone in low-density regions
outliers. The algorithm requires two input parameters: minPts (the
number of samples in a neighborhood for a point to be considered
as a core point), and ε (the maximum distance between two samples
for one to be considered in the neighborhood of the other).

Figure 1 illustrates a mapper graph construction for a dataset X
sampled from a noisy circle. The function (lens) used is f (x) =
||x− p||2, where p is the lowest point in the data. X is colored by
the value of the function. We divide the range of the f into three in-
tervals {V1,V2,V3} with a 30% overlap. For each interval, we com-
pute the clustering of the points lying within the domain of the lens
function restricted to the interval f−1(Vi), and connect the clus-
ters whenever they have a nonempty intersection. M is the mapper
graph whose nodes are colored by the index set, and it preserves
the shape of the point cloud data – a loop.

InceptionV1 architecture. We give a high-level overview of In-
ceptionV1 [SLJ∗15] (GoogLeNet), the neural network architec-
ture employed in this paper. However, our framework is not re-
stricted to the specific architecture of a neural network. Incep-
tionV1 is a CNN that won the ImageNet Large-Scale Visual Recog-
nition Challenge (ILSVRC) for image classification in 2014. It was
trained on ImageNet ILSVRC [DDS∗09]. ImageNet consists of
over 15 million labeled high-resolution images with roughly 22K
classes/categories. ILSVRC takes a subset of ImageNet of around
1K images in each of 1K classes, for a total of 1 million training
images, 50K validation images, and 100K testing images. The high-
lights of InceptionV1 architecture include the use of 1× 1 convo-
lutions, inception modules, and global average pooling. The 1× 1
convolution from NIN (networks in networks) [LCY14] is used to
reduce dimensionality (and computation) prior to expensive convo-
lutions with larger image patches. A new level of organization is
introduced in the form of the inception module, which combines
different types of convolutions for the same input and stacking all
the outputs on top of each other. InceptionV1 contains nine incep-
tion modules, each composed of multiple convolution layers.

The demo version of TopoAct explores the activations of the
last layer of each inception module. The module names such as
mixed3a, mixed3b are shortened as 3a, 3b, etc. This choice is well
aligned with previous literature on visual exploration of Incep-
tionV1 [OMS17, OSJ∗18, HPRC20, CAS∗19].

ResNet architecture. To demonstrate the generality of topological
structures observed across different neural network architectures,

we also apply TopoAct to activation vectors from a ResNet model.
Residual Network or ResNet [HZRS16] was one of first neural net-
work architectures that enabled training extremely deep neural net-
works with up to 1K layers. A neural network ND of depth D is a
subnetwork of any network ND+K of depth D+ k,k > 0. Theoret-
ically, ND+K should be capable of learning any function that ND
can learn by setting the extra k layers to an identity mapping, and
thus perform at least as well as the smaller network. In practice,
however, increasing layers beyond a certain depth leads to a sharp
degradation in performance (higher training error and lower classi-
fication accuracy on the test set) even when normalization schemes
are used for both initialization and intermediate representations.
ResNet overcomes this problem by adding “shortcut” connections
to a layer that adds the output from layer k to the input of layer k+ i
where i is usually 2.

In our experiments, we have implemented ResNet-18, a resid-
ual network with 18 layers following the layer specifications
in [HZRS16]. With 200 training epochs, it achieves a classifica-
tion accuracy of 93.24% on CIFAR-10 and 91.87% on CIFAR-100
datasets [KH09].

5. Methods

We describe data analytic components of TopoAct. First, for a cho-
sen layer of a neural network model (such as InceptionV1), we ob-
tain activation vectors as high-dimensional point clouds for topo-
logical data analysis. Second, we construct mapper graphs from
these point clouds to support interactive exploration. The nodes
in the mapper graphs correspond to clusters of activation vectors
in high-dimensional space, and the edges capture relationships be-
tween these clusters. Third, for each node (cluster) in the mapper
graph, we apply feature visualization to individual activation vec-
tors in the cluster and to the averaged activation vector.

Obtaining activation vectors as point clouds. The activation of a
neuron is a nonlinear transformation of its input. To start, we fix a
trained model (i.e., InceptionV1) and a particular layer ( e.g., 4c) of
interest. We feed each input image to the network and collect the
activations, i.e., the numerical values of how much each neuron has
fired with respect to the input, at a chosen layer. Since InceptionV1
is a CNN, a single neuron does not produce a single activation for
an input image, but instead a collection of activations from a num-
ber of overlapping spatial patches of the image. When an entire im-
age is passed through the network, a neuron will be evaluated mul-
tiple times, once for each patch of the image. For example, a neuron
within layer 4c outputs 14× 14 activations per image (for 14× 14
patches). To simplify the construction, in our setting, we randomly
sample a single spatial activation from the 14×14 patches, exclud-
ing the edges to prevent boundary effects. For 300K images, this
gives us 300K activation vectors for a given layer. Figure 2 illus-
trates what we mean by an activation vector. The dimension of an
activation vector depends on the number of neurons in the layer.
For instance, layers 3a, 3b, and 4a have 256, 480, and 512 neurons,
respectively, producing point clouds of corresponding dimensions.

Constructing mapper graphs from activation vectors. Given a
point cloud of activation vectors, we now compute a mapper graph
as its topological summary. Each node in the mapper graph repre-
sents a cluster of activation vectors, and an edge connects two nodes
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Figure 2: Each activation vector is a vector of spatial activations
across all channels.

if their corresponding clusters have a nonempty intersection. Our
mapper graphs use the L2-norm of the activation vector as the lens
function. We set n = 70 cover elements with p = 20%,30%, and
50% as the amount of overlap. We use DBSCAN [EKSX96] as the
clustering algorithm, with minimum points per cluster minPts = 5.
For the ε parameter of the DBSCAN algorithm, which defines core
points, we use two variations in our experiments. In the first vari-
ation, we use a fixed ε = 1,000 estimated using the distribution
of pairwise distances at the middle layer. In the second variation,
we set ε adaptively for each layer, employing the procedure pro-
posed in [EKSX96]. Specifically, we generate an approximate kNN
graph, sort the distances to the 5-th nearest neighbor, and select an
ε based on the location of a “elbow” when these distances are plot-
ted [EKSX96]. This way, the ε value is more adaptive to the activa-
tion space of each layer. Our adaptive ε values are 830 for 3a, 1070
for 3b, 1750 for 4a, 1630 for 4b, 1330 for 4c, 980 for 4d, 775 for
4e, 790 for 5a, and 260 for 5b.

These parameter configurations give rise to six datasets currently
deployed in our live demo. Each dataset contains nine mapper
graphs (across nine layers of InceptionV1) constructed by a par-
ticular set of parameters associated with the mapper construction.
The mapper graphs are named according to these parameters. In
particular, each name starts with "overlap-x" where x is 20, 30, or
50 to denote 20%, 30%, or 50% overlap, respectively. The second
half of the name consists of "epsilon-x" where x is either "fixed"
or "adaptive", indicating whether ε was fixed (= 1000) or set adap-
tively for each layer. For example, overlap-50-epsilon-fixed is the
dataset containing mapper graphs of nine layers generated using
p = 50% with fixed ε = 1000.

Applying feature visualization to activation vectors. Activation
vectors are high-dimensional abstract vectors. We employ feature
visualization to transform them into a more meaningful semantic
representation using techniques proposed by Olah et al. [OMS17,
OSJ∗18]. Whereas the neural network transforms an input image
into activation vectors, feature visualization goes in the opposite
direction.

Given an activation vector hx,y at a spatial position (x,y), fea-
ture visualization synthesizes an idealized image that would have
produced hx,y via an iterative optimization process. Normally, this
synthesis is achieved by maximizing the dot product hx,y · v of the

vector hx,y with the direction v. However, the vector v that max-
imizes the dot product can have a large orthogonal component.
To counter this, following [CAS∗19], the dot product is multiplied
with a cosine similarity, putting greater emphasis on the angle be-
tween vectors. The optimization process, which is similar to back
propagation, begins with a random noise image. Using gradient de-
scent, this image is iteratively tweaked to maximize the following
objective: (hx,y · v)n+1/(||hx,y|| ||v||)n. Subsequently, a transforma-
tion robustness regularizer [OMS17] is used, which applies small
stochastic transformation (jitter, rotate or scale) to the image before
applying the optimization step. Max-pooling can introduce high
frequencies in the gradients. To tackle this problem, the gradient de-
scent is performed in Fourier basis with frequencies scaled to have
equal energy, which is equivalent to whitening and de-correlating
the data.

Applying feature visualization to all 300K activation vectors re-
sults in corresponding images that are likely to produce such acti-
vations, which we call activation images. Once we obtain a mapper
graph, we also apply feature visualization to the averaged activation
vector per cluster to obtain an averaged activation image for each
cluster. However, feature visualization is not without drawbacks;
due to the optimization process and the size of each cluster, it can
generate abstract images that remain hard to interpret.

6. Exploring the Shape of Activations from InceptionV1

We present the user interface of TopoAct, an interactive system
used to explore the organizational principles of neuron activations
in deep learning image classifiers. We use InceptionV1 trained on
1 million ImageNet images across 1K classes. We obtain activa-
tion vectors of 300K images (300 images per class) via the trained
model. The TopoAct user interface, Figure 3, contains two explo-
ration modes: single-layer exploration and multilayer exploration.
We present various exploration scenarios using TopoAct under the
single-layer exploration mode that provide valuable insights into
learned representations of InceptionV1. See the supplementary ma-
terials for a detailed description on the interface, implementation,
and multilayer exploration mode.

For single-layer exploration, the main takeaway from these sce-
narios is that TopoAct captures specific topological structures, in
particular, branches and loops, in the space of activations that are
hard to detect via classic DR techniques; such features offer new
perspectives on how a neural network “sees" the input images.
The topological features identified by TopoAct can also be used
to guide refined, local shape analysis of the space of activations.

6.1. Discovering Branches from the Space of Activations

We provide several examples of interesting topological structures
that capture relationships between activations during single-layer
exploration. Two main types of topological structures unique to
our framework, branches and loops, differentiate TopoAct from
prior work (e.g., [HPRC20, CAS∗19]). Topologically, branches
in a graph represent bifurcations, thus separations, among image
classes. Although we observe variations of similar features along a
specific branch, different branches may capture distinct, sometimes
unrelated, features. In order to illustrate the insights gained through
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Figure 3: With TopoAct, users can interactively explore topological summaries of activations in a neural network for a single layer and
across multiple layers. Users can investigate activations at a particular layer under the single-layer exploration mode. The mapper graph
panel (a) provides a graph-based topological summary of the activation vectors from 300K images across 1K classes, where each node of the
mapper graph represents a cluster of activation vectors, and each edge encodes the relationships between the clusters. The size of a node is
proportional to the number of activations, and the color is mapped to the average L2 norm of activations in the cluster. The edge thickness is
proportional to the Jaccard index between two nodes. The control panel (b) supports the selection of parameters for the mapper construction
and visual encoding. For a chosen cluster in the mapper graph, the data example panel (c) gives textual description of the top three classes
within the cluster together with (up to) five image examples from each top class. The feature visualization panel (d) applies feature inversion
to generate idealized images, called activation images, for individual activation vectors (obtained from data examples) and for an averaged
activation vector within a chosen cluster.

user interactions and views between different parts of the system,
figures in this section have average activation images (computed
from the average of all activations in a node) overlaid on the nodes
of the mapper graph.

Leg-face bifurcation. Our first example of a bifurcation comes
from the layer 4c of the ImageNet dataset (overlap-30-epsilon-
adaptive). Figure 4 shows two branches emerging from node (d)
in the mapper graph; we refer to such a node as the branching
node. Node (d) is composed of 381 activation vectors. The top three
classes within node (d) are rugby ball, Indian elephant, and wig.
Although this clustering of class labels appears to be random, the
mapper graph coupled with averaged activation images reveals in-
teresting insights.

As illustrated in Figure 4, the left branch appears to capture the
leg of an animal. The top three classes represented in all the clus-
ters within this branch include various breeds of dogs and horses
(a). The right branch appears to capture features that resemble (dis-
torted) human faces. Although the class names associated with
clusters along the right branch may not suggest a relation to hu-
man faces, the data examples associated with these clusters reveal
that all the top classes in the right branch contain images with hu-
mans, most of which include close-ups of faces (b, c). Returning to

the branching node (d), upon closer inspection, we see that it con-
tains images of rugby players and elephants that include both leg
and face features, whereas wig images also include human faces.
Therefore, the activation space bifurcates at the branching node to
further differentiate between leg and face features.

a

d

c

c

d

b
b

a

Figure 4: Leg-face bifurcation. Configuration: layer 4c, Euclidean
norm, 70 intervals, 30% overlap, adaptive ε for DBSCAN.

We further compare TopoAct against t-SNE and UMAP pro-
jections. For t-SNE, we use the Multicore-TSNE [Uly16] Python
library and set the perplexity parameter to be 50 following the
parameter choice used in the activation atlas [CAS∗19]. The
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UMAP projection is performed using its official Python implemen-
tation [MHSG18] with 20 nearest neighbors and a minimum dis-
tance of 0.01. As illustrated in Figure 5, we select nodes that are in-
volved in the leg-face bifurcation and highlight their corresponding
activation vectors in the t-SNE and UMAP projections. In particu-
lar, neither t-SNE nor UMAP reveals a bifurcation as the activation
vectors in the projection are scattered over the entire projection.

a b c

Figure 5: Highlighting activation vectors that belong to the leg-
face bifurcation (c) as orange points in the UMAP (a) and t-SNE
projection (b).

Bird-mammal bifurcation. Our second example of a branch
comes from the layer 5a of the ImageNet dataset (overlap-30-
epsilon-fixed). Figure 6 shows two branches emerging from the
branching node (a), which is composed of 398 activation vectors. It
contains images of both birds and dogs such as oystercatcher and
Brittany spaniel, and the averaged activation image of the branch-
ing node appears to be a combination of the left profile of bird faces
and right profile of the dog-like faces. Upon further investigation,
the bottom branch that contains nodes (d), (e), and (f) focuses on
the features of bird faces: profile views composed of the left eye
and beak, with variations of color and textures as we move along
the branch. The clusters in this branch include mainly bird species
such as bee eater, robin, and lorikeet. The variations in the cap-
tured features and corresponding data samples can be seen in nodes
(d), (e), and (f). The clusters in the top branch, on the other hand,
appear to capture features of mammalian faces: eyes and snouts,
with variations in color and texture. This branch primarily consists
of images from classes of mammals, including various dog breeds,
wolves, and foxes.

a

b
c

d

e
f

a

b

c

d

e

f

Figure 6: Bird-mammal bifurcation. Configuration: layer 5a, Eu-
clidean norm, 70 intervals, 30% overlap, fixed ε for DBSCAN.

Wheel-tread bifurcation. Our third example comes from the layer
4c of the ImageNet dataset (overlap-30-epsilon-adaptive). As il-
lustrated in Figure 7, the branching node (a) is a small cluster of
size 136. All the clusters in this example contain images of vari-
ous types of automobiles, for example minibus, police van, fire
engine, limousine, etc. The branching node (a) appears to capture
what looks like the wheel of a vehicle - a dark round shape with
tread-like pattern. The two branches appear to focus on one of these
two features. Whereas the left branch focuses on the dark round

swirling patterns of automobile wheels (b, c, d), the right branch
appears to focus more on the tread-like patterns and textures (e, f).

d

a

b

c

a

b

c

d

e

f

e

f

Figure 7: Wheel-tread bifurcation. Configuration: layer 4c, Eu-
clidean norm, 70 intervals, 30 % overlap, adaptive ε for DBSAN.

6.2. Exploring Loops from the Space of Activations

Branches capture bifurcations in the types of features across differ-
ent objects, but some loops seem to capture different aspects of the
same underlying object.

Fur-nose-ear-eye loop of mammals. Our first example comes
from layer 4d of the ImageNet dataset (overlap-30-epsilon-fixed).
Figure 8 shows a loop created by six clusters. The top classes in all
six clusters include various dog breeds and a variety of foxes. All
these clusters seem to capture different features (i.e., body parts) re-
lated to these animals. Based on feature visualization, the leftmost
cluster appears to capture the color patterns and the texture of the
fur from the body (a). Going clockwise, the next cluster also cap-
tures the color and texture of the fur but from a different body part,
possibly the fur and hair surrounding the nose, suggested by the
dark spot and the swirling pattern (b). The next two clusters (c, d)
appear to capture animal ears. The averaged activation image cap-
tured by the cluster (e) is not as clearly attributable to a specific part
of an animal’s body. As can be observed in (e), this cluster consists
of images from a larger variety of animals, from foxes to Siamese
cats and hogs. As a result, the corresponding averaged activation
image is a mixture of various colors and slightly different textures.
The last cluster (f) appears to capture the eyes and noses of the an-
imals. We can observe in (f) that the cluster contains front and side
views of dog heads.

c

a

b

f

d

e
a

b

c

d

e

f

Figure 8: Fur-nose-ear-eye loop. Configuration: layer 4d, 70 in-
tervals, 30% overlap, fixed ε for DBSCAN.

Face-body-leg loop of birds. Our next example originates from
layer 5a of the ImageNet dataset (overlap-30-epsilon-adaptive).
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Figure 9 shows six clusters creating the loop. The top three classes
of all the clusters in the loop consist of bird species, and similar to
the previous example, the averaged activation images show us dif-
ferent features (body parts) of the birds captured by these clusters.
Clusters (c, d, e) on the top of the loop appear to capture the left
profile views of the bird faces with the left eye and the beak identi-
fiable in the averaged activation images. These clusters are, in fact,
composed of images of birds. The variation in the color of birds
(from red to blue, and to brown) is reflected in the corresponding
activation images (b, c, d, e). Clusters (a, b, f) on the bottom of
the loop appear to capture the body and legs along with a feath-
ered texture, although not as clearly as the other three clusters. As
can be seen, cluster (f) also includes images of leopard and jaguar
mixed with images of birds (partridge and ruffed grouse) for the
representation of texture.

a
b

c
d

e

f f

d

e

a

b

c

Figure 9: Face-body-leg loop of birds. Configuration: layer 5a, 70
intervals, 30% overlap, adaptive ε for DBSCAN.

6.3. Studying Global Views of Activation Spaces

We now explore the global view of an activation space using the
single-layer exploration mode. Instead of focusing on a single type
of topological structure such as loops or branches, we investi-
gate the distribution of topological structures. As illustrated in Fig-

a

b

a

b

Figure 10: A global view of a mapper graph for a fixed layer. Con-
figuration: layer 5b, 70 intervals, 30% overlap, adaptive ε for DB-
SCAN.

ure 10, we investigate the distribution of branches within the largest
connected component of a mapper graph, at layer 5b of the Im-
ageNet dataset (overlap-30-epsilon-adaptive). We pay special at-
tention to branching nodes with high degrees (a, b). These branch-
ing nodes, in some sense, serve as “anchors” or “hubs” of the un-
derlying space of activations. We make a few interesting, though
speculative, observations. For each of the two branching nodes in

(a) and (b), a mixture of geometric and texture-based images con-
tributes to the representation of the node. Nodes immediately ad-
jacent to the branching node (a), i.e., those that form branches that
merge at node (a), contain geometric objects that are square-shaped
(envelop, bath towel), circle-shaped (bowl, pasta), pointy-shaped
(tie, hammer), and bottle-shaped (beer). Nodes immediately adja-
cent to the branching node (b) have other objects that serve simi-
lar purposes, including square-shaped (vest, cuirass), circle-shaped
(dough, mashed potato), pointy-shaped (ladle, ball point), and
bottle-shaped (milk cans, whiskey jug). However, (a) and (b) seem
to draw these geometric shapes from (almost completely) differ-
ent classes of images, which may indicate a level of self-similarity
within the space of activations that requires further investigation.

6.4. Refined Analysis of Topological Structures

We can utilize interesting topological structures identified by
TopoAct – branches and loops – to obtain topologically meaning-
ful subsets of the activation vectors for further analysis. We present
some examples of TopoAct-guided principal component analysis
(PCA) with the following procedure. We first identify all nodes that
form a branch or a loop within a mapper graph. We then extract
activation vectors (as high-dimensional points) that map to these
nodes. Next, we apply PCA to these points and project them to a
2-dimensional plane.

Consider the leg-face bifurcation from Figure 4. Figure 11(a)
shows the PCA projection of all points that participate in the bi-
furcation. The red points belong to the activation vectors from the
“face” branch and the blue points belong to the “leg” branch. Sim-
ilarly, for the wheel-tread bifurcation from Figure 7, Figure 11(b)
illustrates the PCA projection of its associated points. For both ex-
amples, we could easily observe that points from the two branches
lie along two distinct directions.

a b

Figure 11: PCA of the activation vectors that belong to (a) the leg-
face bifurcation and (b) the wheel-tread bifurcation.

For comparative purposes, we apply PCA to all 300K points
from layer 4c and highlight those from the leg-face bifurcation.
As shown in Figure 12(a), there are no observable branching or
clustering structure within this global projection. To verify that the
leg-face bifurcation is not spurious, we construct a minimal bound-
ing box and identify around 86K neighboring points in the space
of activations. We apply PCA to these 86K points and observe that
points from the leg-face bifurcation form clusters that are separable
from their neighboring points; see Figure 12(b), which confirms
that the leg-face bifurcation detected by TopoAct is not spurious.
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a b

Figure 12: PCA applied to the entire set of activation vectors from
layer 4c (a), and to the activation vectors in the neighborhood of
leg-face bifurcation (b). We do not see any branching or cluster-
ing structure in (a), while (b) reveals the leg-face bifurcation with
respect to its neighboring points.

This example demonstrates the advantage of using TopoAct in
combination with classic DR techniques (such as PCA, t-SNE, and
UMAP) to perform refined shape analysis of the space of activa-
tions. Although the total number of activation vectors in our dataset
is large, the number of significant branches and loops is relatively
small, which leads us to hypothesize that a layer is particularly
well-trained to identify certain directions in the activation space.
As shown here, TopoAct can help us identify these directions.

7. Applying TopoAct to ResNet Trained on CIFAR

To demonstrate the generality of our framework, we provide ad-
ditional experiments using ResNet trained on the CIFAR-10 and
CIFAR-100 datasets [KH09]. Both datasets consist of the same set
of 60K color images of dimension 32× 32, with 50K training im-
ages and 10K test images. CIFAR-10 has 10 images classes with 6K
images per class, and CIFAR-100 has 100 image classes with 600
images per class. The class labels in CIFAR-10 are coarser, such
as automobiles and mammals; whereas classes in CIFAR-100 are
finer, such as bicycle, bus, beaver, and hamster. We demonstrate
that the insights provided by TopoAct are not specific to a par-
ticular dataset or a particular network architecture. We give a few
exploration scenarios involving branches by applying TopoAct to
ResNet-18 trained on the CIFAR-10 dataset; such examples are
similar to those described in section 6. We encourage readers to
explore further with our open-source online demo.

Horse-deer bifurcation. Our first example is a horse-deer bifurca-
tion from the last layer 4.1.bn2 of the CIFAR-10 dataset, as illus-
trated in Figure 13. The left branch that contains nodes (b) and (c)
corresponds to images of deer, whereas the right branch with nodes
(d), (e) and (f) corresponds to images of horses. The branching node
(a) contains images of both horses and deer. In addition, none of
the earlier layers show such a clear bifurcation between the horse
and deer classes. TopoAct reveals the layer at which the network
first begins to differentiate between these two classes. Such insights
would make TopoAct a useful diagnostic tool for deep learning re-
searchers (see section 9).

Frog-cat bifurcation. Similarly, our second example is a frog-cat

a

b

c

d

e

f

a

c

b

d

e

f

Figure 13: Horse-deer bifurcation. Configuration: layer 4.1.bn2,
40 intervals, 20% overlap.

bifurcation from the last layer 4.1.bn2 of the CIFAR-10 dataset, as
illustrated in Figure 14. Here, the branching node (a) contains im-
ages of frogs and cats. It then bifurcates into a left branch (with
nodes (b) and (c)) that contains only images of cats, and a right
branch (with nodes (d), (e), and (f)) that contains only images of
frogs. Even though these are very different types of animals (mam-
mals vs. amphibians), they share similar postures.

a

c

b
a

b

c

d

f

d

e

e

f

Figure 14: Frog-cat bifurcation. Configuration: layer 4.1.bn2, 100
intervals, 40% overlap.

8. Applying TopoAct to BERT Neural Network for NLP

To demonstrate the utility of TopoAct with concrete use cases in
the wild, we have collaborated with a machine learning (ML) ex-
pert in Natural Language Processing (NLP), Dr. Vivek Srikumar
from the University of Utah. We apply TopoAct to activation vec-
tors obtained from the BERT (Bidirectional Encoder Representa-
tions from Transformers) family of models, which is the default
representation of text for a variety of NLP tasks.

Although BERT and similar models are undoubtedly helpful in
improving predictive accuracy, it is not immediately clear why it

c� 2022 The Author(s)
Computer Graphics Forum c� 2022 The Eurographics Association and John Wiley & Sons Ltd.



A. Rathore, N. Chalapathi, S. Palande, & B. Wang / TopoAct: Visually Exploring the Shape of Activations

helps. This problem arises because BERT embeddings (i.e., activa-
tion vectors) consist of a collection of high-dimensional vectors for
every sentence, and this high-dimensional space is not easy to ex-
plore. The highlight of our collaboration is that TopoAct presents
an opportunity in this context by revealing the various syntactic
and semantic regularities that each layer of BERT captures, some
of which are surprising but interpretable for the ML expert.

In addition, TopoAct shows potential directions for improving
these representations, for instance, targeting a specific downstream
NLP task. For example, in addition to some clear patterns of con-
cepts captured via topological branches, we also see clusters and
relationships between them that appear noisy, yet stable. The ex-
istence of these suggests that there may be opportunities for de-
veloping topologically aware regularization techniques for train-
ing BERT-like models by imposing additional constraints such that
the mapper graphs resulting from TopoAct should exhibit certain
structural properties, which is left for future work.

8.1. BERT and Activation Datasets

BERT and other transformers-based language models have recently
found widespread application as the go-to methods for many tasks
in NLP such as sentiment analysis, sentence classification, and
domain-specific language modeling [BLC19,LYK∗20]. Jawahar et
al. [JSS19] explored and established that contextual embeddings
from BERT do indeed encode syntactic structures in earlier layers
and compositional structures in later layers.

For our experiments, we use the “bert-base-uncased” trained
network from the Huggingface’s transformers library [WDS∗19]
with 12 layers, each with 768 neurons. We collect activation vectors
from BERT on the training set of the Georgetown University Multi-
layer (GUM) corpus [Zel17]. The data contains 4780 sentences and
81,857 tokens. Tokens are individual words, numbers, or punctua-
tion marks that form sentences. Among the 80K tokens, about 11K
are punctuations.

We collect the activations by passing each sentence through the
trained BERT model, collecting per-token activations, and applying
TopoAct to the activations for all 12 layers. That is, for each of
the 12 layers of the BERT neural network, we compute mapper
graphs for point clouds of the token’s activations in 768 dimensions
across various parameter settings, similar to our earlier examples
involving InceptionV1 and ResNet-18.

Our experiments applying TopoAct to BERT activations con-
firm and expand upon the earlier results in NLP [BLC19, LYK∗20,
JSS19]. In the following sections, we present some use cases of
structures found in the BERT activations through our tool that high-
light both local and global structures in both syntactic and semantic
regimes.

8.2. Pronoun Differentiation

For layer 12 (the last layer) of BERT, we notice a branching struc-
ture that highlights the differentiation among pronouns. Recall that
a pronoun is “a word that can function by itself as a noun phrase
and that refers either to the participants in the discourse (e.g., I,

a
b

c

d
e

a

b

c

She looks at `me` and then at Renata…
Pete looked at `me` with mild disgust…

I think about that particular time with `my` mother…
She trusts me , she’s more `my` dog than anyone’s…

I was riding on `me` bike…

…that it gladdened `my` old heart… 
…I thought the hill `my` little house was built… 

I remember signing `my` first autograph…

d …I picked up a rock the size of `my` fist… 

She handed `me` a shirt

e This frightened `me`… 
… inscriptions all around `my` room 

She invited `me` in for tea and massage

Figure 15: Pronoun differentiation. Configuration: layer 12, Eu-
clidean norm, 80 intervals, 30% overlap.

you) or to someone or something mentioned elsewhere in the dis-
course (e.g., she, it, this)”, according to Oxford English Dictionary.

As illustrated in Figure 15, the chain of nodes with (d) and (e)
represents a mixture of the first person singular personal pronoun
(i.e, me) and the first person singular personal possessive form (i.e.,
my). The chain continues along (b) and (c) with the possessive
form (my), but the personal pronoun splits into its own branch (a)
(me). Node (a) consists of sentences which employ the word me
in phrases such as “She invited me in for tea”,“She looks at me
and then at Renata”, “He soon came back and gave me the good
news”, etc. Node (b) consists of sentences that employ the word
my in phrases such as “since I was in my twenties”, “I wished
my da would come home”. In particular, it also contains a sentence
“I was riding on me bike and I thought I’d swallowed an insect”;
here the word me is used instead of my likely due to a local di-
alect. This indicates that the differentiation between the pronouns
goes beyond just the word-level and instead captures semantic dif-
ferences as well.

This structure is interesting to our ML expert for a couple of rea-
sons. First, we have a cluster of only the first person forms (me
and my), and not the second (you) and third person forms (he, she,
they). Second, although the pronoun (specifically, the object pro-
noun me) and the possessive form (my) are related in one sense
(i.e., first person singular), they are distinct both in terms of their
meanings and grammatical roles. The branching structure high-
lights this similarity and their divergence.

8.3. Contextual Differentiation

We give two examples involving how branches from TopoAct cap-
ture contextual differentiations. As shown in Figure 16, the struc-
ture of nodes about water highlights the different roles that water
may play. Nodes (a) and (b) reflect oceanic usages (e.g., sea, ma-
rine, waves). Node (d) reflects culinary usages (“2 cups water (or
broth)”) and starts to connect with other liquids used in cooking
(e.g., “olive oil to taste”). And other labeled nodes (e.g., node (e))
reflect meteorological usages (“the noise of the rain”), culinary us-
ages (“rinse...under cold water”), and oceanic usages.

We see similar fine-grained distinctions between photographs,
photography, and art in Figure 17. The structure starts with art-
works, museum, and art in node (a), moves on to display, exhibi-
tion, and exhibits in node (b), which then gets further refined into
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a

b

c

d

a

b

c

…contacted Thailand 's foreign minister over temporary 

housing for the Rohingya out at `sea`.

…the sun 's first rays as they rise above the `sea` each day.

…characterized by unique land and `marine` biodiversity.

…NATO must take on responsibility for ensuring the 

security of pipelines and `sea` lanes… 

…held on tight as he rode the `waves`…

…from the whale ’s speckled back and down into the `sea` 

…dodge balls , `water` balloons , wiffle balls etc.

…the `water` began to swirl down the drain. 

Drizzle a bit of olive `oil` in a pan over medium-high heat.

2 cups `water` (or broth )

d
Rinse 1 cup of quinoa in a fine mesh sieve under cold `water` .

e
…heat up 2 tablespoons vegetable `oil` over medium-low heat 

e

…the asylum seekers found in the `water` may have left the boat 

Rinse quinoa thoroughly in a fine mesh seive under cold `water` .

…their voices were lost in the noise of the `rain` and the water

Figure 16: Contextual differentiation. Configuration: layer 9, Eu-
clidean norm, 80 intervals, 30% overlap.

portrait and painting in node (c), as well as shot and photo in
node (d).

a

b

c

d

e

a Which elements of specific `artworks` do they focus on?

Do `museum` labels have an impact on how people look at artworks ?

Zurbarán’s cycle of Jacob and his Sons has been on `display`…

…curator of the `exhibition` at the University…

b

c …to commit the `image` to the silk screen medium by applying paint…

…the Marquis de Lafayette commissioned L'Enfant to paint a 

`portrait` of Washington

File `photo` of magician David Gish displaying magic 

props for a young child.

d Portrait `shot` of Dennis Hopper , famous for his role in the 1969 film

e

f

…the Andy Warhol exhibit of Polaroids and screen `prints` at the University…

Warhol 's `photographic` legacy

f I think his `photography` is equally influential as his graphic works

he is in the company of other well-known `photographers` who used the camera

he is in the company of other well-known photographers who used the `camera`

Figure 17: Contextual differentiation. Configuration: layer 9, Eu-
clidean distance, 80 intervals, 30% overlap, Jaccard = 0.01.

The fact that BERT (without any fine-tuning for any task) cap-
tures these differences is surprising for our ML expert. Such an in-
sight could point toward an explanation for how transformer mod-
els like BERT and its many variants seem to capture world knowl-
edge and even common-sense knowledge [BRS∗19].

8.4. Local and Global Syntax

It is known that the lower layers of BERT characterize more local
syntax and non-contextual lexical semantics, whereas the later lay-
ers capture global sentential structure and semantics [TDP19]. We
see this by comparing the structures we see in layer 3 in (Figure 18)
with the ones in layer 9 (Figure 15, Figure 16, Figure 17).

In lower layers, we observe groupings of words with similar
parts of speech that diverge into chains that contain only words with
similar meaning, as shown in Figure 18. For example, a generic ad-
jective node (c) bifurcates into a set of nodes that describe size
(e.g., bigger, largest, highest in node (a)) and a set of nodes that
describe goodness (e.g., best and better in node (b)).

The other examples from later layers – such as layer 9 (Fig-
ure 19) – show that the mapper graph encodes complex relational

a
b

c

a

b

c

…Even if the odds are `impossible`… 

It ’s really `hard` to tell .

I could see into his head `better` than I could see into my own

…it is `best` to drive there

…they think they do `better` than you

…to first apply rules to the `smallest` applicable unit 

wikiHow is a collaborative effort to build the world 's `largest` 

…Democratic Party received 491,667 votes , the `highest` in 

this constituency.

d

d

One of the `most` famous plants is the dragon 's blood tree

we all must contend with as `best` we can

Microsoft 's Internet Explorer 6 is one of the `most` successful software

Figure 18: Local syntax at an earlier layer. Configuration: layer 3,
cosine distance, 80 intervals, 30% overlap.

abstractions that go beyond simply the dictionary meaning of the
word.

8.5. After-When Separation

The branching structure in Figure 19 represents a surprising and
difficult to characterize dichotomy in the usage of words like “af-
ter” and “when”. Both these words are used to convey temporal
meaning, but, the latter is also used to introduce discourse rela-
tionships such as explanations or sometimes even causations. The
fact that these two usages are distinctly represented in the BERT
embeddings shows that BERT does indeed characterize this subtle
difference and, as a result, could serve as a basis for developing
future parsers for discourse or rhetorical structure of text.

a
b

a

b

modifying the coordinate system of geometry `when` 

recovering the wrapping of the figure .

Enjambment takes place `when` a syntactic unit is broken up 

across two lines

A consequence of this law is that `if` the velocity increases 

then the pressure falls

Galois returned to mathematics `after` his expulsion from 

the École Normale

Frank Rack got in touch `after` they returned from Antarctica

High-tech industry began to flourish `after` World War II 

Figure 19: After-When separation. Configuration: layer 9, Eu-
clidean distance, 80 intervals, 40% overlap.

8.6. Temporal and Locative Prepositions

The difference between temporal and locative usages of preposi-
tions is well studied, and forms the basis of the Preposition Super-
sense Project that Dr. Srikumar is part of [SSHP15]. As illustrated
in Figure 20, both nodes (a) and (b), and their parent node, repre-
sent clusters of prepositions, but the two branches capture distinct
meanings rather than mere surface level differences. To see this,
note that both branches include the preposition word in, but the
branch (a) represents its temporal usage, whereas (b) represents its
locative usage. This branching structure is reminiscent of the Su-
persense Hierarchy developed via linguistic analysis [SHB∗20].

These, and the previous observations, suggest that we can dis-
cover linguistic structures from BERT activations using TopoAct.
Furthermore, TopoAct also provides investigative directions for
why these embeddings have been successful at a wide variety of
linguistic tasks.
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a

b

c

a was created Count of the Holy Roman Empire `in` 1701

which he did `on` 17 January 1831

established `in` the 14th century and in 1423

He grew up in Texas and rose to fame `in` the early 2000s

it exhibited its Warhol collection `in` 2010 

and `in` 2015 she became the first and only woman

b

…she was kept at Flag Land Base `in` Clearwater, Florida

Like other cities `in` the so-called " rust belt “

…manuscript in the Russian State Military Archive `in` Moscow

c

Figure 20: Temporal and locative prepositions. Configuration:
layer 9, Euclidean distance, 100 intervals, 30% overlap.

9. Discussion

TopoAct supports exploratory analysis of numerous interesting
topological structures, locally and globally, in the space of acti-
vation vectors. We encourage readers to utilize the live demo of
datasets for InceptionV1 and ResNet for such an exploration. Our
approach is not without its limitations. The exploration scenarios
presented here are specific to the choice of input images as well
as the choice of activation vectors. Further analysis is required to
determine how stable the results are with respect to these choices.
However, some of these limitations are common to other recent
approaches (e.g., [CAS∗19, HPRC20]). We offer some topics for
discussion and future work.

Generality. We focus on CNNs, specifically, InceptionV1 and
ResNet-18, in this paper. However, our approach is not restricted
to a particular network architecture. Mapper graphs could be gen-
erated and used as a vehicle for visual exploration whenever neuron
activations are present. TopoAct can be generalized to explore new
datasets coupled with other trained neural network architectures,
such as ZFNet [ZF12], AlexNet [KSH17], and VGGNet [SZ15].
We have showed that our approach is generalizable beyond image
classifiers to include textual embedding networks such as BERT.

Parameter tuning. Practical and automatic parameter tuning for
the mapper construction remains a challenging open problem for
the broad TDA community. Carriere et al. [CMO18] provided
the state-of-the-art, albeit theoretical, results on mapper parame-
ter selection under restrictive settings. Their framework assumed
that a point cloud sample taken from the underlying space has a
well-behaved, parameterizable probability distribution (formally,
an (a,b)-standard distribution) and that the sample is sufficiently
large, so that the Hausdorff distance between the sample and the un-
derlying space is small. However, upon careful investigation, these
assumptions are not applicable in our setting. Although we may as-
sume that the activation space is a compact subset of the Euclidean
space, we cannot verify that the activation vectors we sample fol-
low the generative model of an (a,b)-standard distribution, and that
300K vectors form a sufficiently large sample for approximating or
possibly reconstructing the underlying space.

On the other hand, the mapper construction comes with “best
practices" in terms of parameter tuning, which rely on a grid
search in the parameter space where good parameter combinations
are those that produce stable structures. Finding a theoretically
sound and yet practical parameter tuning strategy for our mapper
graph construction remains open; see the supplementary materi-

als for more discussion on this topic. For the current version of
the TopoAct, we focus on exploring various mapper graphs with
predetermined sets of parameter combinations following the best
practices. Additionally, confirmation bias is a risk when TopoAct
is utilized in practice because users may simply tune the parameters
until they see what they want to see in the visualization. However,
confirmation bias cannot be resolved without automatic parameter
tuning, which remains an open problem.

Stability. Additional theoretical results regarding the stability of
mapper construction are available in [BBMW20] and the refer-
ences therein. The investigation is on-going into how stable the
mapper graphs are with respect to different sampling techniques.
Under some assumptions on the sampling condition, Brown et
al. [BBMW20] showed that a pair of mapper graphs is close if
their underlying point clouds are sampled from the same proba-
bility density function concentrated on the underlying topological
space. However, similar to the situation of parameter tuning, the
gap between theory and practice is still large. Filling such a gap is
beyond the scope of this paper.

Adversarial attacks. An important aspect in understanding the ef-
fectiveness of adversarial attacks on neural networks is how an
attack alters the intermediate representations, i.e., the activations.
TopoAct visualizes these representations from a topological per-
spective and hence might be useful in analyzing the effect of adver-
sarial attacks at different layers of the network.

Corrective actions during training. A branching point (a bifurca-
tion) in the space of activations at a particular layer may indicate
the point where the network starts distinguishing a pair of classes.
This knowledge can be useful to inform corrective actions for in-
puts in the test data that are being misclassified. For example, if
two classes that bifurcate at a particular layer in TopoAct are still
being misclassified as each other, an expert can choose to increase
the network width at subsequent layers, or to selectively augment
the training data for these classes to encourage better separation.

10. Conclusion

In this paper, we present TopoAct, a framework to explore the
topology of the activation spaces of neural networks. We obtain
topological summaries of the activation spaces via mapper graphs
that capture the organizational principal behind neuron activations.
We apply TopoAct to trained neural networks such as ResNet
and InceptionV1 for image classification, and BERT for contex-
tual word embeddings. In each case, we present exploration sce-
narios that provide valuable insights into the image representations
or word embeddings learned by different layers of these networks.
This paper is the first step toward understanding the topological
structure of the activation spaces in deep neural networks.
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