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Abstract
Premise: The selection of Arabidopsis as a model organism played a pivotal role in
advancing genomic science. The competing frameworks to select an agricultural‐ or
ecological‐based model species were rejected, in favor of building knowledge in a
species that would facilitate genome‐enabled research.
Methods: Here, we examine the ability of models based on Arabidopsis gene ex-
pression data to predict tissue identity in other flowering plants. Comparing different
machine learning algorithms, models trained and tested on Arabidopsis data achieved
near perfect precision and recall values, whereas when tissue identity is predicted
across the flowering plants using models trained on Arabidopsis data, precision values
range from 0.69 to 0.74 and recall from 0.54 to 0.64.
Results: The identity of belowground tissue can be predicted more accurately than
other tissue types, and the ability to predict tissue identity is not correlated with
phylogenetic distance from Arabidopsis. k‐nearest neighbors is the most successful
algorithm, suggesting that gene expression signatures, rather than marker genes, are
more valuable to create models for tissue and cell type prediction in plants.
Discussion: Our data‐driven results highlight that the assertion that knowledge from
Arabidopsis is translatable to other plants is not always true. Considering the current
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landscape of abundant sequencing data, we should reevaluate the scientific emphasis
on Arabidopsis and prioritize plant diversity.

K E YWORD S

Arabidopsis, flowering plants, gene expression, machine learning, model species, tissue identity

Resumen
Premisa: La selección de Arabidopsis como organismo modelo desempeñó un papel
fundamental en el avance de la ciencia genómica. Se descartaron los marcos de
referencia que proponían seleccionar una especie modelo basada en criterios agrícolas
o ecológicos, en favor de profundizar en el conocimiento de en una especie que
promueve la investigación enfocada en el genoma.
Métodos: Aquí, examinamos la capacidad de los modelos basados en datos de ex-
presión génica de Arabidopsis para predecir la identidad del tejido en otras plantas
con flores. Comparando diferentes algoritmos de aprendizaje automático, los modelos
entrenados y probados con datos de Arabidopsis alcanzaron valores de precisión y
recuperación casi perfectos. De manera contrastante, cuando se predice la identidad
del tejido en todas las plantas con flores utilizando modelos entrenados con datos de
Arabidopsis, los valores de precisión oscilan entre 0,69 y 0,74 y los de recuperación
entre 0,54 y 0,64.
Resultados: La identidad del tejido subterráneo puede predecirse con mayor exactitud
que otros tipos de tejido, y la capacidad de predecir la identidad del tejido no está
correlacionada con la distancia filogenética de Arabidopsis. El algoritmo k‐nearest
neighbors es el más exitoso y sugiere que las firmas de expresión génica, más que los
genes marcadores, son más valiosas para crear modelos en plantas de predicción de
tejidos y de tipos celulares.
Discusión: Nuestros resultados sustentados en datos demuestran que no siempre se
cumple la afirmación de que el conocimiento de Arabidopsis es traducible a otras
plantas. Teniendo en cuenta el panorama actual de abundantes datos de secuencia-
ción, deberíamos reevaluar el énfasis científico en Arabidopsis y priorizar la diversidad
vegetal.

Historically, plant biology has focused on inferring genetic,
molecular, physiological, and ecological mechanisms. Con-
ventionally, through quantifying phenomena and applying
statistics, hypotheses are tested and decisions regarding the
most likely scenarios are determined. New technologies and
computational approaches have caused a shift from hypothesis‐
to data‐driven research (Mazzocchi, 2015). Moreover, plant
biology has embraced the inclusion of machine learning
methods in addition to traditional statistical approaches
(Ij, 2018). The combination of a deluge of data and new
computational methods has allowed for predictive, rather than
inferential, methods. Both statistics and machine learning can
be used for inference and prediction, but machine learning
methods more often classify and predict based on class labels
rather than inferring the statistical parameters of a population.
In plant biology, such predictive approaches underlie the
frameworks of phenotyping (Coppens et al., 2017), precision
agriculture (Zhang et al., 2002), genomic prediction (Crossa
et al., 2014), linking transcriptomic profiles to phenotype
(Azodi et al., 2020), and protein structure determination
(Jumper et al., 2021). Just as inferential statistics has its limi-
tations, the robustness and ability to extrapolate predictive
models are also constrained by the empirical context from
which the data originates. Although data‐driven research is

slowly becoming more theoretical and predictive
(Hogeweg, 2011), the creation of universal plant models is
hindered by their overwhelming diversity. Not only is the
phylogenetic diversity among flowering plants immense (The
Angiosperm Phylogeny Group et al., 2016), but plants are ex-
ceptionally responsive to their environments (Sultan, 2000) and
have evolved symbiotic interactions with and defense mecha-
nisms against innumerable microbes (Mitchell et al., 2006).
Furthermore, technical variability in data acquisition makes it
difficult to exploit the huge amount of expression data archived
in databases. The number of ways we sample molecular profiles
from plant tissues and the interaction effects that arise between
phylogenetically diverse species with environments, stresses,
and biotic interactions are countless and prevent extrapolating
results between studies.

Due to the clear advantages of studying a single model
species, the early days of the genomics era tended to overlook
the importance of prioritizing plant diversity. The candidates
considered for the first sequenced genome were either easily
transformable (e.g., species within Solanaceae; Knapp
et al., 2004) or were already used for genetics (e.g., maize; Strable
and Scanlon, 2009), but biodiversity was never considered
(Meyerowitz, 2001). Reasons for choosing Arabidopsis as
the first sequenced plant genome (Arabidopsis Genome
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Initiative, 2000) include ease of transformation (Clough and
Bent, 1998), its small genome (Bennett et al., 2003), life history
traits that allow for genetics through crossing, and short gen-
eration times (Meyerowitz, 1987). The justification for initially
sequencing the genome of a single model species was that such
focus would allow unprecedented molecular discoveries that
could be translated to other species and improve our under-
standing of all plants (Bevan and Walsh, 2005). The strategy to
focus on a single model species was successful, and Arabidopsis
is the most cited plant in the past 20 years, even surpassing key
crops and all other plant species (Marks et al., 2023). Our
molecular knowledge in plants was purposefully constructed to
focus on Arabidopsis over crops and plant genetic diversity.
However, such a choice has little relevance in a changing climate
with dwindling natural resources and vanishing biodiversity that
have become the most pressing concerns of our time. The
cultural dynamics, dominated by the Global North, that influ-
enced the choice of Arabidopsis as the first sequenced genome
are reflected in the subsequently sequenced plant genomes.
Plants native or endemic to land outside the Global North or
first described by Indigenous cultures and territories have been
sequenced by outside colonial powers (Marks et al., 2021;
Dwyer et al., 2022). While sequencing Arabidopsis has certainly
expanded our knowledge of molecular processes, this intense
focus has limited our understanding of other species, raising the
question: To what extent can the insights from Arabidopsis be
extrapolated to the rest of flowering plants?

In the 20 years since the release of the Arabidopsis
genome sequence (Arabidopsis Genome Initiative, 2000),
the number of sequenced plant genomes has dramatically
increased (Michael and Jackson, 2013; Li and Harkess, 2018;
Marks et al., 2021), leading to a greater understanding of the
evolutionary origin and genetic mechanisms underlying
numerous traits across the green lineage. Next‐generation
sequencing, for example, has enabled unprecedented sur-
veys of genome‐scale features across species, tissue types,
environments, and interactions between plants with abiotic
and biotic factors. There are currently over 300,000 public
gene expression datasets spanning thousands of diverse
plant species (Lim et al., 2022). Cross‐species comparisons
of gene expression across plants have usually been limited
by the number of species analyzed (Proost and
Mutwil, 2018) or their sampling breadth. Most studies have
generated datasets from scratch (Julca et al., 2021) instead of
leveraging public repositories. Databases and datasets
curating and making vast numbers of gene expression
profiles and their associated metadata have been created.
For example, an Arabidopis RNA‐Seq database compiles
20,068 publicly available Arabidopsis RNA‐Seq libraries
(Zhang et al., 2020), and the Plant Public RNA‐seq Database
has ~45,000 maize, rice, wheat, soybean, and cotton samples
(Yu et al., 2022). Previously, a dataset of 2671 publicly
available gene expression profiles from 54 flowering plant
species across seven developmental tissue types and nine
stresses had been curated (Palande et al., 2023). More than
20 years after the release of the Arabidopsis genome, we
have accumulated enough data across plants to ask

unprecedented questions, and we have the computational
tools that permit comparative approaches to analyze such
massive amounts of data.

Here, building upon large, curated databases of Arabi-
dopsis (Zhang et al., 2020) and flowering plant gene expres-
sion profiles (Palande et al., 2023), we examine how predictive
Arabidopsis is as a model species relative to the rest of the
flowering plants and to what degree we can apply our
knowledge from model organisms to diverse plant species.
Dimension reduction through principal component analysis
(PCA) reveals that biotic stress response and tissue type are
primary, orthogonal sources of structure in gene expression
data from Arabidopsis, and while angiosperm data projected
onto this space retain some structure, the regions occupied
between tissue types become less distinct. We next compare
the performance of different machine learning models. The k‐
nearest neighbors (kNN) method yields precision and recall
values of up to 0.99 using models trained and tested on
Arabidopsis data. Model performance decreases significantly,
with higher precision than recall values, when data from
across flowering plants are tested using models trained on
Arabidopsis data. Belowground tissue is more separated from
and predictable than other tissue types, and phylogenetic
distance from Arabidopsis does not appear to influence pre-
diction rates. We end with a discussion of the implications of
our results for the current structure of the plant science
community, acknowledging that the past focus on Arabidopsis
as a model organism based on decisions made decades ago
was effective at that time; however, we now advocate for a
shift in approach due to changing circumstances, particularly
in light of the pressing issue of biodiversity loss. We argue for
a more decentralized and inclusive research framework that
better encompasses the diversity of plants and the human
cultures that represent them, adapting to current environ-
mental and scientific challenges.

METHODS

The code necessary to reproduce the results presented here is
available on GitHub (https://github.com/PlantsAndPython/
arabidopsis-gene-expression; see Data Availability Statement).
The gene expression data are not included in the repository
due to the large file size; these are available at Dryad
(Chitwood and Palande, 2024; https://datadryad.org/stash/
dataset/doi:10.5061/dryad.4b8gthtn7). To reproduce the
analysis presented in this paper, first clone the GitHub
repository, then download the dataset from Dryad and
deposit it in the “data” directory of the cloned repository. The
code assumes that the data files are available in the directory.

Datasets

We used two curated databases in this analysis (Figure 1A).
The first contained 28,165 Arabidopsis gene expression
profiles across 37,334 genes (Zhang et al., 2020). The second
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F IGURE 1 (See caption on next page).
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contained 2671 flowering plant expression profiles across
6327 orthogroups (Palande et al., 2023). We originally
classified samples from both databases into 23 tissue types:
“anther,” “carpel,” “cotyledon,” “flower,” “hypocotyl,”
“inflorescence,” “internode,” “leaf,” “other,” “petal,” “peti-
ole,” “pistil,” “reproductive‐other,” “root,” “root cell,”
“seed,” “seedling,” “sepal,” “shoot,” “stamen,” “stigma,”
“vasculature,” or “whole plant.” Although we discuss model
performance using the detailed tissue designations above,
due to large differences in sample size between these cate-
gories, for our main analysis we aggregated tissue designa-
tions into four tissue type labels: “aboveground,” “below-
ground,” “whole plant,” or “other.” The categories are
purposefully encompassing and were chosen to facilitate
accurate assignment across the broad categories of experi-
mental data we analyzed, focusing on aboveground and
belowground tissue identity as one of the simplest cases to
test tissue predictability. Samples for which tissue identity
could not be determined from their description were dis-
carded, as they were incompatible with our machine
learning pipeline. Additionally, we discarded low‐quality
samples, which we measured by unique mapped rate, or the
number of uniquely mapping reads divided by the total
number of reads. After removing samples with missing
metadata and samples with low unique mapped rate
(<75%), the Arabidopsis database was left with 19,415
samples. A conserved Arabidopsis database was also con-
structed by keeping only the genes mapped to the or-
thogroups from the flowering plant database. The conserved
Arabidopsis database contained the same number of sam-
ples, but with much smaller expression profiles across only
the 6327 orthogroups shared with the angiosperm dataset.

Classification models

Classification is a common machine learning task in which,
given data points belonging to two or more classes, the goal
is to learn a function that best differentiates between points
from different classes. Then, given a new data point, the
function can be used to decide which class the point belongs
to. The classifier function can be learned in many ways,
leading to various types of machine learning models. For
each classifier model in this study, we employed the
following modeling methods:

Linear support vector classifier (SVC): In linear classifi-
cation, each point is viewed as a vector in k‐dimensional

space (Cortes and Vapnik, 1995), where k is the number of
desired groups to predict. The goal is to find (k − 1)‐
dimensional hyperplanes that separate the points belonging
to different classes. For example, if we wish to predict which
of two groups (k = 2) samples belong to, then in a two‐
dimensional space, we find one (k − 1 = 1) hyperplane to
divide the space and separate the points of the different classes
(Figure 1C). There are many possible choices for hyperplanes
that can classify the points. A reasonable choice is to find the
ones that maximize the separation between points from dif-
ferent classes. These are known as maximum‐margin hyper-
planes. Geometrically, the maximum‐margin hyperplanes are
defined by the points that lie closest to them; therefore, such
points are called support vectors.

Multi‐layer perceptron (MLP): The SVC model (see
above) assumes that the classes are linearly separable,
which may not be true. MLPs are a class of artificial neural
networks (Haykin, 1998) with three or more layers of
“perceptrons” with non‐linear activation. An MLP consists
of an input and an output layer, with one or more hidden
layers of neurons. As is conventional for MLP model
parameterization, we experimented with one and two
hidden‐layer MLPs (see Figure 1C) and used rectified
linear unit (ReLU) activation in all cases to optimize the
prediction of our classifier. In ReLU, a neuron's activation
is the weighted sum of its inputs if the sum is non‐
negative, and zero otherwise. Even with this simple non-
linear activation function, MLPs can outperform the linear
SVC model.

Random forest (RF): Random forests (Ho, 1995) perform
classification by constructing an ensemble of decision trees.
Each decision tree outputs a class label for the given sample,
and the output of the RF is the class label predicted by the
majority of the trees. In a decision tree, each internal node is
labeled by an input feature, and the leaf nodes are labeled by
the class labels. Starting from the root node, the input set is
recursively partitioned into children nodes using the input
feature associated with the node. The recursion ends when
all data points in the node belong to the same class, or when
some pre‐specified termination criteria, such as maximum
depth of the tree, are met. Which feature to split the data on
at each level is determined using information criteria such
as Gini impurity or entropy that measure how consistent
the subsets are with respect to the class labels after the split.

Histogram‐based gradient boosting (HGB): Gradient
boosting (Mason et al., 1999) is another class of methods
that uses a large ensemble of decision trees. In HGB, the

F IGURE 1 Experimental design visualization. (A) Data curation, cleaning, and preparation. The original Arabidopsis dataset consists of 28,165 samples
with 37,334 gene expression features. Samples with low unique map rates or missing metadata were discarded (gray), yielding the full Arabidopsis dataset
with 19,415 samples (magenta). The conserved Arabidopsis dataset consists of the same 19,415 samples as the full dataset while the angiosperm dataset has
only 2671 samples. Both the conserved Arabidopsis and angiosperm datasets consist of 6327 gene expression features that represent conserved orthogroups
shared by both datasets. (B) Training and test set creation. Classification models were fitted using 70% of the full and conserved Arabidopsis datasets and
testing on the remaining 30%. The angiosperm dataset was used as a test set on models created from the conserved Arabidopsis dataset. (C) Classification
models. Once the training and test sets have been created, classification models and prediction can be run. The five models we test are linear support vector
classifier (SVC), multi‐layer perceptron (MLP), random forest (RF), histogram‐based gradient boosting (HGB), and k‐nearest neighbor classifier (kNN),
which are described in the Methods section.
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real‐valued input features are first discretized into a few
(typically 256) bins using histograms. This allows the
training algorithm to run much more efficiently and con-
struct a much larger ensemble of decision trees to support
the classification.

k‐nearest neighbors (kNN) classifier: In kNN classifiers
(Cover and Hart, 1967), class labels are assigned based on a
majority vote of the k‐nearest training points. The distance
metric and the number of neighbors are specified by the
user. In our experiments, correlation distance between the
expression profiles was used to train the kNN classifier.

Experimental design

To establish the utility of gene expression profiles in pre-
dicting tissue type, we trained supervised machine learning
models (by tuning hyperparameters using a Bayesian opti-
mization procedure, see below) to classify the Arabidopsis
data by tissue types (Table 1). The database was split into
training and test sets (70%:30% split; Figure 1B). An arbi-
trary percentage of random samples is used to train a model,
and the remainder are used to test its performance. The
70%:30% split for the training and test sets is standard and
worked for our purposes here, but any proportion could
work. To ensure comparability, all five models were trained
and tested on the same training and test sets. Next, we
wanted to examine how predictive Arabidopsis is to the rest
of the flowering plants (Table 2). To test this, we used a set
of conserved Arabidopsis transcripts with orthogroups
across angiosperms, split into training and test sets
(70%:30% split) as before. The same five machine learning
models were trained on the conserved Arabidopsis training
set. The performance of these models was first tested on the
conserved gene Arabidopsis test set to make sure that the
models were still able to predict the tissue types with a
significantly smaller number of features. We then used the
same models to classify the angiosperm data to test how well
they extrapolate to species other than Arabidopsis. Each
machine learning model employed in our experiments
requires additional hyperparameters that need to be tuned
to optimize model performance. We used the Bayesian
optimization procedure implemented in the Hyperopt
package in Python (Bergstra et al., 2013). Briefly, by
evaluating an objective function (e.g., model accuracy), a
Bayesian probability model can be built that uses past
parameter search values to inform the selection of the next
parameter values to evaluate and arrive at optimized
parameter values. To gain insights into the functional
annotation and enrichment of our gene list, we performed a
Gene Ontology (GO) term (Ashburner et al., 2000) analysis
using the DAVID Functional Annotation Clustering tool
(version 2021; http://david.ncifcrf.gov) (Huang et al., 2009).
Each principal component (PC) is calculated as a linear
combination of input features. The weight attributed to each
feature that defines a PC is known as a loading. Each gene
expression feature thus has a single loading value, allowing

us to determine which genes most contribute to a PC. We
filtered the 200 genes with the most positive and negative
PC1 loading values. The annotation was performed using
The Arabidopsis Information Resource (TAIR) IDs (https://
www.arabidopsis.org/; Reiser et al., 2024) and selecting
GO terms from levels 3 and 4 of the molecular function and
biological process categories.

RESULTS

Dimension reduction and alignment between
Arabidopsis and angiosperm gene expression
datasets

Although inferential statistics is sensitive to imbalances
between factor levels, predictive methods are less so, as long
as there is sufficient sampling of the features of the smallest
class. Although we originally classified samples into 23 tis-
sue types (see Methods section) and we compare model
results of this classification with the main results (see

TABLE 1 Classification performance of models trained on the full
Arabidopsis dataset.

Model Precision Recall F1 score

SVC 0.765131 0.80103 0.777531

MLP 0.843599 0.844979 0.832854

RF 0.845664 0.826609 0.833746

HGB 0.976665 0.976481 0.976319

kNN 0.98921 0.989185 0.989193

Note: HGB = histogram‐based gradient boosting; kNN = k‐nearest neighbors;
MLP =multi‐layer perceptron; RF = random forest; SVC = support vector classifier.

TABLE 2 Classification performance of models trained on the
conserved Arabidopsis dataset and tested on conserved Arabidopsis or
angiosperm datasets.

Model Test set Precision Recall F1 score

SVC Arabidopsis 0.740855 0.778026 0.754276

Angiosperm 0.695691 0.576189 0.591683

MLP Arabidopsis 0.822682 0.828155 0.824351

Angiosperm 0.734603 0.547361 0.611767

RF Arabidopsis 0.862941 0.864721 0.861927

Angiosperm 0.747272 0.569075 0.622122

HGB Arabidopsis 0.971034 0.970987 0.970574

Angiosperm 0.741902 0.567952 0.640741

kNN Arabidopsis 0.987804 0.987811 0.987803

Angiosperm 0.733478 0.643205 0.663313

Note: HGB = histogram‐based gradient boosting; kNN = k‐nearest neighbors;
MLP =multi‐layer perceptron; RF = random forest; SVC = support vector classifier.
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below), out of an abundance of caution, we categorized
samples into bins with adequate sampling of the above-
ground, belowground, whole plant, and other labels. A PCA
performed on the full dataset of 19,415 Arabidopsis RNA‐
Seq samples shows a clear separation by the four tissue type
labels (Figure 2A). The aboveground, belowground, and
other tissue types are well separated from each other,
although the belowground tissue has the least overlap with
other tissues. The whole plant tissue type, composed of
different combinations of the other tissues, is not well
separated, as we would expect. The separation of tissues
occurs along a gradient defined by PC2, demonstrating that
tissue type is not the primary source of variance in the data.
Rather, a small proportion of samples are distributed across
PC1 in an additive, orthogonal manner, preserving the
separation of tissue types defined by PC2. To investigate the
underlying cause responsible for the primary source of
variation in the data, we performed GO enrichment on
genes with the most extreme PC1 loading values that are

most responsible for defining PC1. In the full Arabidopsis
dataset (Figure 2A), high PC1 values, which include a small
number of samples that contribute to a disproportionate
amount of variance in the data, are defined by high
expression of genes associated with response to the biotic
stress and oxidative damage GO terms (Appendix S1). Low
PC1 values, which include a majority of samples across
tissues and which we assume arise from plants grown under
regular conditions associated with less stress, are defined by
high expression of genes with GO terms associated with
biosynthesis, biogenesis, and cell growth. Remarkably, in the
full Arabidopsis dataset, negative PC1 loading values are
enriched for glucosinolate biosynthesis and other metabolic
processes (false discovery rate <0.05).

From these large‐scale datasets, we developed a predic-
tive model to test if tissue type could be inferred from ex-
pression patterns alone and if this Arabidopsis‐trained
model could be transferred to other flowering plants. We
previously created a set of 6327 low‐copy orthogroups that

F IGURE 2 Principal component analysis (PCA) of gene expression profiles. PCAs with gene expression profiles colored by aboveground (blue),
belowground (orange), whole plant (red), and other (green) tissue types for (A) the full Arabidopsis dataset, (B) the conserved Arabidopsis dataset, (C) the
angiosperm dataset projected onto the conserved Arabidopsis PCA from (B), and (D) the same as (C), but with conserved Arabidopsis gene expression
profiles in the background (transparent gray).
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are deeply conserved across flowering plants (Palande
et al., 2023) and used a set of 6327 Arabidopsis genes cor-
responding to these orthogroups for all downstream
analyses. A PCA performed on this subset of 6327 con-
served flowering plant genes shows mostly the same struc-
ture as the analysis with all Arabidopsis genes included
(Figure 2B). However, while the belowground tissue type
remains distinct from the rest of the data, the aboveground
tissue type overlaps more with the whole plant and other
tissue types. Note that whether a PC is positive or negative is
arbitrary, which explains the “flip” of PC2 values relative to
the full set of Arabidopsis genes. An analysis of the enriched
GO terms for PC1 loading values from the conserved gene
PCA reveals that high PC1 values are associated with biotic
responses, but also with anther‐ and pollen‐related GO
terms (Appendix S1). Low PC1 values are associated over-
whelmingly with photosynthesis. Because the two datasets
have corresponding orthogroup features, we are able to
project the angiosperm dataset onto the PCA defined by the
conserved gene Arabidopsis dataset (Figure 2C, D). While
the overall structure defining the distributions of tissue
types is maintained in the projected angiosperm data, there
is substantial overlap between the aboveground and be-
lowground tissue types. We conclude that indeed there is
conservation of tissue‐specific expression between Arabi-
dopsis and the rest of the flowering plants, but as expected,
the alignment of the underlying structures of gene expres-
sion patterns defining tissue type identity is not identical.

Predictive modeling of plant tissue from gene
expression

We used supervised learning classifiers to test if
gene expression profiles could predict tissue type in

Arabidopsis and if these Arabidopsis‐trained models could
be applied more broadly to flowering plants. We first split
the Arabidopsis data into testing and training sets, with
samples divided into four classes of aboveground, be-
lowground, whole plant, or other, as described above.
Models trained on Arabidopsis expression data and used
to predict tissue type in Arabidopsis, whether the full or
conserved gene datasets, achieved high precision and
recall scores. The highest F1 scores (the harmonic mean
of precision and recall) for the full and conserved datasets
were achieved using a kNN algorithm (0.99 and 0.99,
respectively; Tables 1 and 2) and the lowest using the SVC
model (0.78 and 0.75). The HGB model also achieved
high F1 scores (0.98 and 0.97), whereas the results for RF
(0.83 and 0.86) and MLP (0.83 and 0.82) were interme-
diate. When used to predict Arabidopsis data, the preci-
sion and recall values for each model were similar to each
other, indicating similar positive prediction value (pre-
cision, true positives divided by true positives and false
positives) and sensitivity (recall, true positives divided by
true positives and false negatives). The relative prediction
rates of different tissue types to each other were equiva-
lent for the full Arabidopsis dataset (Figure 3A). If we run
the kNN model using the 23 tissue labels instead of four,
similarly high prediction statistics are achieved both for
the full Arabidopsis dataset (precision: 0.980999, recall:
0.980944, F1 score: 0.980830) and the conserved Arabi-
dopsis dataset (precision: 0.975517, recall: 0.975279, F1
score: 0.974980).

The projection of gene expression patterns from across
flowering plants onto a PCA (calculated using Python
scikit‐learn functions PCA and StandardScaler to scale
gene expression features [Pedregosa et al., 2011]) using a
conserved set of genes from Arabidopsis shows consider-
able variability (Figure 2C, D). Using models trained on

F IGURE 3 Confusion matrices using the kNN classifier. Confusion matrices showing the true label identity (vertical axis) and the proportion of
samples assigned to predicted label identities (horizontal axis) for (A) the full Arabidopsis dataset and (B) the angiosperm dataset. Proportion indicated by
viridis color scale (Garnier et al., 2024).
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Arabidopsis data and tested on flowering plants, predic-
tion rates are more similar to each other using different
algorithms than Arabidopsis alone but perform much
worse, and with higher precision than recall rates
(Table 2). For the kNN, HGB, RF, MLP, and SVC meth-
ods, precision values were 0.73, 0.74, 0.75, 0.73, and 0.70,
respectively, whereas the rates of recall were 0.64, 0.57,
0.57, 0.55, and 0.58. The precision values are uniformly
around the same as the values of the worst‐performing
models using only Arabidopsis data and may reflect that,
although a reasonable classifier can be constructed for
Arabidopsis data, this is not the case when predicting
flowering plant data using models trained on Arabidopsis.
Although these rates are moderately high, they must be
interpreted in the context of using only four tissue type
labels. The relatively higher precision rates compared to
recall indicate that when a sample is retrieved, there is a
higher rate of the models calling a true positive (positive
prediction value) compared to the fraction of relevant
samples retrieved (sensitivity). The prediction rates across
tissue types were not evenly distributed (Figure 3B). Be-
lowground tissue was accurately classified, at a rate of
0.96, while aboveground tissue was only correctly pre-
dicted at a rate of 0.64. The tissue types other and whole
plant were classified poorly (0.074 and 0.32, respectively),
and almost no samples were predicted as the tissue type
other, including samples classified as other. Although the
prediction accuracy varies considerably across plant
families (Figure 4), from around 0.4 to 0.8, we could not
identify any phylogenetic signal or find any support that
prediction of tissue identity is inversely correlated with
the distance of a plant family from Arabidopsis in the
Brassicaceae. If we run the kNN model predicting flow-
ering plant data trained on Arabidopsis data using the 23
tissue labels instead of four, we achieve similarly poor
prediction results (precision: 0.523399, recall: 0.515943,
F1 score: 0.490203).

DISCUSSION

Arabidopsis‐only models are highly accurate

Although we focus on tissue identity in this study, we note
that the strongest source of variance (PC1) in publicly
available Arabidopsis gene expression profiles is a signature
associated with biotic defense (Appendix S1) and that it acts
in an additive, orthogonal manner with respect to tissue
type, which is the next strongest source of variance (PC2).
Higher prediction rates are expected for the Arabidopsis‐
only models both because the same dataset is being used for
training and testing, and because the data structure that
separates the main factors being tested (i.e., aboveground
and belowground tissues), as visualized in a PCA, is sub-
stantial (Figure 2A, B). From this perspective, it is perhaps
not surprising that kNN is the best‐performing algorithm,
based on the overall distance‐based proximity of gene ex-
pression profiles for each label to each other (Table 1). The
other methods, which are based on decision trees or neural
networks, focus on individual gene expression values as
parameters, and thus fail to account for overall distance.
The focus on individual gene expression values instead of
the overall signature or profile is reminiscent of the
molecular biology concept of “biomarkers” to indicate the
tissue or stress from which a sample arises. The out-
performance of kNN over other algorithms we tested may
suggest that gene expression signatures (rather than indi-
vidual gene expression values) are more valuable in creating
models for tissue and cell type prediction.

Arabidopsis gene expression as a model for
other flowering plants may not be the most
suitable approach

Lower prediction rates are expected when a model is tested
on different data than its training set (Table 2). However,
the lower precision and recall scores attained when a model
trained on Arabidopsis is tested on gene expression samples
across the flowering plants undermines the foundational
argument for using model species: that data from Arabi-
dopsis would be predictive for plants in general. This is not
to say that there is not substantial conservation of tissue‐
specific gene expression patterns. Our own work (Palande
et al., 2023) and that of others (Julca et al., 2021) strongly
supports conserved tissue‐specific gene expression patterns
across flowering plants, as is true of animals as well
(Fukushima and Pollock, 2020). Rather, the ability to
leverage and predict tissue identity from conserved gene
expression profiles is diminished when building a model
from a single, arbitrary species.

Details of the performance of our model hint at un-
derlying biological considerations when using model species
data. Not all tissue types are equally predictable, and the
prediction of belowground tissue outperforms other tissue
types (Figure 3). We hypothesized that the ability to predict

F IGURE 4 Prediction accuracy by plant family. Using the kNN
classifier on the angiosperm dataset, the proportion of samples correctly
(blue) and wrongly (orange) predicted from Arabidopsis data is shown as a
stacked bar plot.
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tissue identity from Arabidopsis may be inversely correlated
with the phylogenetic distance of a sample from Brassica-
ceae, but we found no evidence to support this idea (Fig-
ure 4). Additionally, the precision values for predicting
tissue type of flowering plant data from Arabidopsis are
much higher than the recall values (Table 2). This may
indicate that models are relatively better at calling samples
with conserved tissue specificity with Arabidopsis (a true
positive) over those without (a false negative). These results
may also be a product of our classification scheme. For
example, samples in the aboveground and whole plant tissue
categories are often more similar to each other than to be-
lowground tissue because they are missing roots and might
more easily be misclassified with each other. The category
other is composed of diverse tissues that may not have clear
predictive features. These factors should be considered
when evaluating the classification results (Figure 3). None-
theless, if we run a kNN model using the original 23 tissue
type labels that were aggregated to create the four labels that
we focused on, similar prediction results are achieved; this is
true both for exceptional results when testing and training
on only Arabidopsis data and for poor performance when
predicting on flowering plant data trained using Arabidopsis
data. While it is important to eventually explore more
defined labels describing specific tissue types (or even single
cell data) across developmental stages, our results indicate
that high prediction rates using only Arabidopsis data and
lower rates predicting flowering plant data from a single
model species would likely remain the case.

Our results potentially arise not only from genes with
evolutionary differences in tissue‐specific expression
compared to Arabidopsis, but also from genes that may
have conserved expression but differ in the ways we have
culturally constructed our developmental descriptions of
plant species. Such a circumstance might arise when the
cell type–specific expression of a gene is truly conserved,
but evolved differences in functional morphology between
species lead us to apply different tissue descriptors (e.g.,
between a herbaceous annual and a woody perennial, or a
CAM succulent compared to a weedy C3 plant). The
misalignment of tissue labels extends to more quantitative
descriptors and to the molecular level, including GO
terms and Kyoto Encyclopedia of Genes and Genomes
(KEGG) terms (Kanehisa and Goto, 2000) that ultimately
become biased toward plants with sequenced genomes
(Provart et al., 2016). For example, in our analysis of genes
corresponding to the most positive and most negative PC1
loading values, there was a noticeable enrichment of genes
associated with the glucosinolate biosynthetic and meta-
bolic pathways in Arabidopsis samples (Appendix S1).
However, this enrichment was absent in broader angio-
sperm samples, as these compounds are found almost
exclusively in Brassicaceae. Glucosinolates are a diverse
group of secondary metabolites that play a critical role in
plant defense against herbivores and pathogens. Beyond
their defensive role, they seem to be involved in growth,
development, microbiota interactions, and phosphate

nutrition (Kopriva, 2021). Focusing on a single organism
or on a small group of model species to predict attributes
of all plants is a flawed approach from both biological
(arising from evolutionary novelty) and philosophical
(due to semantic, ontological, and cultural differences in
how we socially construct plants) perspectives.

Moving forward and embracing plant and
cultural diversity

Arabidopsis was selected as a model species unilaterally,
over raised objections, decades ago, on the basis of
primarily genetic and molecular biology considerations
(Meyerowitz, 1987; Clough and Bent, 1998; Arabidopsis
Genome Initiative, 2000; Bennett et al., 2003; Bevan and
Walsh, 2005). Arguments in favor of selecting agricultural
or ecological models or models that would better represent
plant diversity were ignored. These past decisions have led
to continued focus on Arabidopsis, and there is continuing
advocacy for funding research using Arabidopsis as a model
species at the expense of plant diversity to the current day
(Provart et al., 2016; Parry et al., 2020). Since then, data
science and computational approaches have gained
increasing importance. After decades of acquiring
sequencing data from across the flowering plants, we are
able to ask objectively if focusing on a single plant allows us
to predict the biology of other flowering plants better than if
we had studied all plants equally from the start; the answer
is no (Table 2). Using a data science approach and building
machine learning models using Arabidopsis gene expression
data to predict the tissue identity of gene expression samples
from across flowering plants, as we have done here, does not
preclude the consideration of other, more important qual-
itative arguments against the model species concept that
continues to limit the potential of the plant science com-
munity. Furthermore, beyond Arabidopsis, there is an
additional focus on agriculturally important species at the
expense of all plants (Marks et al., 2023). More insidiously,
the social construct of plants and their diversity arises from
colonialism, as evidenced not only by the plants that we in
the Global North have chosen to research and document
and how we do so, but also by which plant genomes have
been sequenced and by whom (Marks et al., 2021), usually
through extinguishing and stealing the cultural knowledge
of Indigenous peoples (Dwyer et al., 2022). The collective
gene expression data of the plant science community is
highly biased towards Arabidopsis (Marks et al., 2023). We
speculate that if the global plant science community were to
operate more equitably and include different cultural per-
spectives focusing on diverse species, the data we collect
would be more varied and could be included in models that
better encompass all plants.

Useful discoveries and insights have arisen from the
Arabidopsis genome initiative that have served as a blue-
print for and inspired similar genomic initiatives in
numerous other plant species (Arabidopsis Genome

10 of 13 | MACHINE LEARNING MODELS FOR PREDICTING PLANT TISSUE IDENTITY

 21680450, 0, D
ow

nloaded from
 https://bsapubs.onlinelibrary.w

iley.com
/doi/10.1002/aps3.11621, W

iley O
nline L

ibrary on [23/11/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



Initiative, 2000). Decades later, using machine learning
approaches, we are now able to reevaluate our past efforts
and plan a new course forward. The methodology that we
present here can be used for much more than evaluating
whether a particular plant species is an optimal model
organism choice; rather, these methods can be used to
create and evaluate models leveraging all species data in
predictive frameworks. Rather than advocating for con-
tinued focus and funding for a single model species
(Provart et al., 2016; Parry et al., 2020), we are long past
due in addressing the historical inequities that have led to
our current construction of the plant sciences and in
embracing the biological and cultural diversity of the plant
world, which will result in a sounder and more predictive
science.
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