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Data is Shape, Shape is Data

Topology: Study of shape - How are things put together?

Properties invariant under continuous deformations:
▶ Translation, scaling, orientation, twisting, bending, etc..

TDA: Topological Data Analysis

Collection of topological tools to:
▶ Characterize and summarize the shape of data.
▶ Main tools: Persistent Homology, Mapper
▶ Utilize shape in data analysis, ML, visualization, etc.

Applications:
▶ Brain Networks,
▶ Plant gene expression,
▶ Scientific simulations,
▶ · · ·
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Overview

1 Persistent Homology and Brain Networks

2 Mapper in Plant Biology

3 Learning on Simplicial Complexes

4 Aligning and Averaging Trees

5 Future Direction
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Part 1

Learning with Topological Features of Brain Networks
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Learning with Brain Networks

Motivation: Leverage shape and structure of brain networks in ML

Idea: Brain Networks → Topological Features → Statistics / ML.

Contributions

Structural Networks: Statistical inference.

Functional Networks: Regression (Predicting behavioral scores).

Functional Networks: Classification (SVM, RF, neural nets).
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Topological Features
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Structural Brain Networks

Encode shared structural influences across a group of subjects.
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Functional Brain Networks

Encode level of synchronicity across time (for a single subject).
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Graph Filtration

Figure: Graph filtration to compute β0 (# connected components) curve.

Tracks changes in connectivity across a sequence of thresholds.
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Persistent Homology

Figure: Persistent homology computation, represented as persistence barcodes in
(b) and persistence diagrams (PDs) in (d)

Tracks changes in topology across multiple scales
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Statistical Inference with Structural Networks

Permutation, Bootstrap tests
▶ Test statistic: Largest gap between β0 curves.
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Statistical Inference with Structural Networks

Main Result1: Evidence of abnormalities in gray matter regions
associated with Salience Network.

1Palande, Jose, et al. 2019.
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Relating Functional Networks to Behavioral Measures

KPLS: Kernel Partial Least Squares Regression

Main Result2: Topological features improve predictive power.
2Wong et al. 2016.
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Classification with Functional Networks

Main Result3: 69.9% classification accuracy.

3Rathore et al. 2019.
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Main Results

Regression4

▶ Augmenting features through kernels (inner product matrices).
▶ Adding topological features improves predictive power.
▶ Only hybrid models provide statistically significant improvement.

Classification5

▶ Augmenting features through kernels (SVM, RF).
▶ Custom layer for topological features (NN).
▶ Hybrid models typically outperform.
▶ Best accuracy: 69.9% (3-layer hybrid NN).
▶ Issues due to data heterogeneity.

4Wong et al. 2016.
5Rathore et al. 2019.
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Part 2

Visualizing the Shape of Gene Expression
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Shape of Gene Expression

Motivation: Visual (meta-) analysis of gene expression across angiosperms

Idea: Apply Mapper to capture the shape of gene expression.

Contributions6:

Interactive visualization built using Mapper.

Hypotheses generation based on Mapper features.

Identifying subsets of data and performing statistical analysis.

6Palande, Kaste, et al. 2022.
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Mapper Algorithm

Figure: Mapper Algorithm
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Mapper: Key Components

Choice of lens: Domain / application dependent.
▶ Only observe structure visible through specified lens.
▶ Induce priors, domain knowledge.

Choice of cover:
▶ Determines connectivity, density of output graph.
▶ Usually chosen by trial and error.

Clustering algorithm:
▶ Pick your favorite!
▶ We stick to the default: DBSCAN.
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Data

16 plant families, 54 distinct species.

8 tissue types, 9 biotic and abiotic stresses (+ healthy samples!)

≈ 3200 samples, 2671 left after processing.
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Reducing Heterogeneity

Cross-species analysis: Need correspondences!

Orthogroups: Groups of homologous genes across species.

TPM counts summed for genes in an orthogroup.

Excluded multi-gene families with diverse functions.

Excluded genes with high copy number.

2 million genes → 6328 orthogroups.

Data combined into single expression matrix.

2671 Samples × 6328 orthogroups.
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Dimension Reduction 1

Figure: Dimension Reduction: Points colored by Tissue type.
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Dimension Reduction 2

Figure: Dimension Reduction: Points colored by Stress type.
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Creating Lenses7

Two lenses: Tissue lens, Stress lens.

Pick a base class:
▶ healthy vs stressed, leaf vs other.

Fit a linear model
▶ ideal expression for base class.

Project all samples on to the linear model.

Residuals: Deviation from ideal expression.

Use norm of the residual as lens.
Figure: Creating lens

7Nicolau, Levine, and Carlsson 2011.
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Lens Correlations and GO Enrichment

Compute Lens-Orthogroup correlation.

2.5% most +ve (right tail).

2.5% most -ve (left tail).

GO Enrichment Analysis for tail vs all.

Use Arabidopsis genome as reference.

GO Analysis tools:
▶ https://pypi.org/project/goatools/

Figure: Leaf lens

Figure: Stress lens
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Go Enrichment Results

Tissue lens: Captures photosynthetic vs non-photosynthetic divide.

GO enrichment of +ve correlated orthogroups:
▶ Core metabolic processes, development of non-photosynthetic tissues.

GO enrichment of -ve correlated orthogroups:
▶ Related to photosynthesis, response to light, chloroplast organization.

Stress lens: healthy vs stressed gene expression

GO enrichment of +ve correlated orthogroups:
▶ Genes involved in stress response.

GO enrichment of -ve correlated orthogroups:
▶ Genes involved in growth and reproduction.
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Mapper: Tissue Lens

Figure: Tissue (leaf) Mapper Visualization
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Mapper: Stress Lens

Figure: Stress Mapper Visualization
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Part 3

Spectral Algorithms for Simplicial Complexes
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Motivation: Leverage the topology of higher-order interactions in ML.

Idea: Operate directly on simplicial complexes.

Contributions8:

Label Propagation, Spectral Clustering for simplicial complexes.

Spectral Sparsification.

Random walks, Harmonics on simplicial complexes.

8Osting, Palande, and Wang 2020.
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Dual Graph
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Label Propagation

Graphs

Simplicial Complexes9

9We visualize the dual graph for simplicial complexes
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Spectral Clustering

Graphs

Simplicial Complexes
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Sparsification: Preserving Spectral Properties

Graphs

(1− ϵ)LG ⪯ LH ⪯ (1 + ϵ)LG

Simplicial Complexes

(1− ϵ)LK ⪯ LJ ⪯ (1 + ϵ)LK

(1− ϵ)xTLKx ≤ xTLJx ≤ (1 + ϵ)xTLKx
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Learning: Before and After Sparsification

Spectral Clustering

Label Propagation
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Random Walk on Simplicial Complex

We define random walk on the dual graph10

Other versions have been explored in literature11

We prove all are equivalent to random walk on the dual graph.

10Osting, Palande, and Wang 2020.
11Mukherjee and Steenbergen 2016; Parzanchevski and Rosenthal 2016.

Sourabh Palande Leveraging Topological Structure 36 / 54



Part 4

Aligning and Averaging Trees
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Motivation: Perform computations on collections of trees.

Idea: Optimal transport based alignment, combined with matrix sketching.

Contributions12:

Adapt the Gromov-Wasserstein (GW) framework13

Compute an average merge tree (Frechet mean)

Compute a basis set of merge trees

12Li, Palande, Yan, and Wang 2021.
13Chowdhury and Needham 2019.
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Matrix Sketching
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Tree Alignment
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Gromov-Wasserstein Mapping
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Tree Sketching Pipeline
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Merge Tree

Figure: Merge tree from a scalar field [LinWangMunch2020]
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Application: Heated Cylinder Simulation
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Tree Sketching Pipeline
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Part 5

Recap and Future Directions
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Recap

Leveraging topology in data analysis, ML, and visualization.

Feature engineering: Brain network applications.
▶ Statistical Inference.
▶ Regression.
▶ Classification.

ML Algorithms: Learning on Simplicial Complexes.

Dimension Reduction: Tree alignment and sketching.

Visualization: plant gene expression.
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Ongoing Work

Leveraging topology in data analysis, ML, and visualization.

Improving Mapper.
▶ Systematic parameter tuning.
▶ Fuzzy Clustering, mixture models for cover parameter.
▶ Learning lens function through topological optimization.

Evaluating Arabidopsis as model species.
▶ Training ML models on Arabidopsis gene expression.

Using full gene set 37K.
Using 2671 orthogroup reference genes.

▶ Tissue classification accuracy:

Arabidopsis: 98%
Angiosperms: 64%

▶ Is Arabidopsis a good model?
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Future Direction

Proposal: Hypergraph models and methods for *omics.

Genome-wide hypergraph construction.
▶ Graph Coarsening.
▶ Mapper / Fuzzy clustering.

Machine learning on hypergraphs.
▶ Extending graph ML to hypergraphs.
▶ Stochastic processes / dynamical systems on hypergraphs.
▶ Physics inspired / Physics based ML models.

Hypergraph alignment. (Optimal transport!)

Trained model adaptation through alignment.

Cross-specie / multi-specie ML models.
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