## Leveraging Topological Structure in Data Analysis, Machine Learning, and Visualization

#### Sourabh Palande

#### CMSE, Michigan State University

#### Seattle Children's Research Institute, March 24, 2023









## Data is Shape, Shape is Data

Topology: Study of shape - How are things put together?

- Properties invariant under continuous deformations:
  - Translation, scaling, orientation, twisting, bending, etc..
- **TDA:** Topological Data Analysis
  - Collection of topological tools to:
    - Characterize and summarize the shape of data.
    - Main tools: Persistent Homology, Mapper
    - Utilize shape in data analysis, ML, visualization, etc.
  - Applications:
    - Brain Networks,
    - Plant gene expression,
    - Scientific simulations,
    - • •

### Overview



- 2 Mapper in Plant Biology
- 3 Learning on Simplicial Complexes
- Aligning and Averaging Trees
- 5 Future Direction

- 4 目 ト - 4 日 ト

### Part 1

#### Learning with Topological Features of Brain Networks

イロト イポト イヨト イヨト

# Learning with Brain Networks

Motivation: Leverage shape and structure of brain networks in ML



Idea: Brain Networks  $\rightarrow$  Topological Features  $\rightarrow$  Statistics / ML.

#### Contributions

- Structural Networks: Statistical inference.
- Functional Networks: Regression (Predicting behavioral scores).
- Functional Networks: Classification (SVM, RF, neural nets).

### **Topological Features**



Sourabh Palande

Leveraging Topological Structure

### Structural Brain Networks



Encode shared structural influences across a group of subjects.

### Functional Brain Networks



Encode level of synchronicity across time (for a single subject).

# Graph Filtration



Figure: Graph filtration to compute  $\beta_0$  (# connected components) curve.

Tracks changes in connectivity across a sequence of thresholds.

## Persistent Homology



Figure: Persistent homology computation, represented as persistence barcodes in **(b)** and persistence diagrams (PDs) in **(d)** 

Tracks changes in topology across multiple scales

## Statistical Inference with Structural Networks



- Permutation, Bootstrap tests
  - Test statistic: Largest gap between  $\beta_0$  curves.

## Statistical Inference with Structural Networks



**Main Result**<sup>1</sup>: Evidence of abnormalities in gray matter regions associated with Salience Network.

<sup>&</sup>lt;sup>1</sup>Palande, Jose, et al. 2019.

# Relating Functional Networks to Behavioral Measures



**Persistence Diagrams** 

KPLS: Kernel Partial Least Squares Regression

Main Result<sup>2</sup>: Topological features improve predictive power.

| <sup>2</sup> Wong et al. 2016. | < □ > < 圖 > < 필 > < 필            | • E  | ୬ ବ ( |
|--------------------------------|----------------------------------|------|-------|
| Sourabh Palande                | Leveraging Topological Structure | 13/5 | 4     |

# Classification with Functional Networks



Main Result<sup>3</sup>: 69.9% classification accuracy.

<sup>&</sup>lt;sup>3</sup>Rathore et al. 2019.

## Main Results

- Regression<sup>4</sup>
  - Augmenting features through kernels (inner product matrices).
  - Adding topological features improves predictive power.
  - Only hybrid models provide statistically significant improvement.
- Classification<sup>5</sup>
  - Augmenting features through kernels (SVM, RF).
  - Custom layer for topological features (NN).
  - Hybrid models typically outperform.
  - Best accuracy: 69.9% (3-layer hybrid NN).
  - Issues due to data heterogeneity.

<sup>&</sup>lt;sup>4</sup>Wong et al. 2016. <sup>5</sup>Rathore et al. 2019.

## Part 2

#### Visualizing the Shape of Gene Expression

Sourabh Palande

Leveraging Topological Structure

16 / 54

A D N A B N A B N A B N

# Shape of Gene Expression

Motivation: Visual (meta-) analysis of gene expression across angiosperms



Idea: Apply Mapper to capture the shape of gene expression.

#### **Contributions**<sup>6</sup>:

- Interactive visualization built using Mapper.
- Hypotheses generation based on Mapper features.
- Identifying subsets of data and performing statistical analysis.

| <sup>6</sup> Palande, | Kaste, | et al. | 2022. |
|-----------------------|--------|--------|-------|
|-----------------------|--------|--------|-------|

# Mapper Algorithm



Lens

Mapper Graph

э

イロト イボト イヨト イヨト

#### Figure: Mapper Algorithm

| Palande | Leveraging Topological Structure | 18 / 54 |
|---------|----------------------------------|---------|

• Choice of lens: Domain / application dependent.

- Only observe structure visible through specified lens.
- Induce priors, domain knowledge.
- Choice of cover:
  - Determines connectivity, density of output graph.
  - Usually chosen by trial and error.
- Clustering algorithm:
  - Pick your favorite!
  - We stick to the default: DBSCAN.

### Data

- 16 plant families, 54 distinct species.
- 8 tissue types, 9 biotic and abiotic stresses (+ healthy samples!)
- pprox 3200 samples, 2671 left after processing.



- Cross-species analysis: Need correspondences!
- Orthogroups: Groups of homologous genes across species.
- TPM counts summed for genes in an orthogroup.
- Excluded multi-gene families with diverse functions.
- Excluded genes with high copy number.
- 2 million genes  $\rightarrow$  6328 orthogroups.
- Data combined into single expression matrix.
- 2671 Samples  $\times$  6328 orthogroups.

### **Dimension Reduction 1**



Figure: Dimension Reduction: Points colored by Tissue type.

A D N A B N A B N A B N

### **Dimension Reduction 2**



Figure: Dimension Reduction: Points colored by Stress type.

A D N A B N A B N A B N

# Creating Lenses<sup>7</sup>

- Two lenses: Tissue lens, Stress lens.
- Pick a base class:
  - healthy vs stressed, <u>leaf</u> vs other.
- Fit a linear model
  - *ideal* expression for base class.
- Project all samples on to the linear model.
- Residuals: Deviation from *ideal* expression.
- Use norm of the residual as lens.



Figure: Creating lens

<sup>&</sup>lt;sup>7</sup>Nicolau, Levine, and Carlsson 2011.

## Lens Correlations and GO Enrichment

- Compute Lens-Orthogroup correlation.
- 2.5% most +ve (right tail).
- 2.5% most -ve (left tail).
- GO Enrichment Analysis for tail vs all.
- Use Arabidopsis genome as reference.
- GO Analysis tools:
  - https://pypi.org/project/goatools/



Figure: Leaf lens



Figure: Stress lens

## Go Enrichment Results

- Tissue lens: Captures photosynthetic vs non-photosynthetic divide.
- GO enrichment of +ve correlated orthogroups:
  - Core metabolic processes, development of non-photosynthetic tissues.
- GO enrichment of -ve correlated orthogroups:
  - Related to photosynthesis, response to light, chloroplast organization.
- Stress lens: healthy vs stressed gene expression
- GO enrichment of +ve correlated orthogroups:
  - Genes involved in stress response.
- GO enrichment of -ve correlated orthogroups:
  - Genes involved in growth and reproduction.

## Mapper: Tissue Lens



Figure: Tissue (leaf) Mapper Visualization

Sourabh Palande

Leveraging Topological Structure

27 / 54

A D N A B N A B N A B N

### Mapper: Stress Lens



Figure: Stress Mapper Visualization

(日)

# Part 3

#### Spectral Algorithms for Simplicial Complexes

Leveraging Topological Structure

A D N A B N A B N A B N

Motivation: Leverage the topology of higher-order interactions in ML.



Idea: Operate directly on simplicial complexes.

#### **Contributions**<sup>8</sup>:

- Label Propagation, Spectral Clustering for simplicial complexes.
- Spectral Sparsification.
- Random walks, Harmonics on simplicial complexes.

<sup>&</sup>lt;sup>8</sup>Osting, Palande, and Wang 2020.

# Dual Graph



イロト イヨト イヨト イヨト

# Label Propagation

#### Graphs



#### Simplicial Complexes<sup>9</sup>



<sup>9</sup>We visualize the dual graph for simplicial complexes  $\langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle \langle \Box \rangle$ 

| Soura | hk | עו |  | а |
|-------|----|----|--|---|
| Joura |    |    |  |   |

Leveraging Topological Structure

# Spectral Clustering





#### **Simplicial Complexes**



A D N A B N A B N A B N

# Sparsification: Preserving Spectral Properties

#### Graphs



 $(1-\epsilon)L_G \preceq L_H \preceq (1+\epsilon)L_G$ 

#### **Simplicial Complexes**



 $(1-\epsilon)\mathcal{L}_{K} \prec \mathcal{L}_{I} \prec (1+\epsilon)\mathcal{L}_{K}$  $(1-\epsilon)x^{T}\mathcal{L}_{K}x \leq x^{T}\mathcal{L}_{J}x \leq (1+\epsilon)x^{T}\mathcal{L}_{K}x$ 

### Learning: Before and After Sparsification

#### **Spectral Clustering**



#### Label Propagation



< 回 > < 三 > < 三 >

# Random Walk on Simplicial Complex

- We define random walk on the dual graph<sup>10</sup>
- Other versions have been explored in literature<sup>11</sup>
- We prove all are equivalent to random walk on the dual graph.



<sup>10</sup>Osting, Palande, and Wang 2020.

11 Mukherjee and Steenbergen 2016; Parzanchevski and Rosenthal 2016. 🚛 👘 🚊 🔊 🔍

# Part 4

#### Aligning and Averaging Trees

イロト イポト イヨト イヨト

#### Motivation: Perform computations on collections of trees.



**Idea:** Optimal transport based alignment, combined with matrix sketching. **Contributions**<sup>12</sup>:

- Adapt the Gromov-Wasserstein (GW) framework<sup>13</sup>
- Compute an average merge tree (Frechet mean)
- Compute a basis set of merge trees

<sup>&</sup>lt;sup>12</sup>Li, Palande, Yan, and Wang 2021.

<sup>&</sup>lt;sup>13</sup>Chowdhury and Needham 2019.

## Matrix Sketching



# Tree Alignment



<ロト < 四ト < 三ト < 三ト

# Gromov-Wasserstein Mapping



Sourabh Palande

## Tree Sketching Pipeline



| Sourabh Palande | Leveraging Topological Structure | 4 |
|-----------------|----------------------------------|---|
|-----------------|----------------------------------|---|

イロト イヨト イヨト イヨト



Figure: Merge tree from a scalar field [LinWangMunch2020]

Sourabh Palande

Leveraging Topological Structure

A D N A B N A B N A B N

## Application: Heated Cylinder Simulation



Leveraging Topological Structure

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

## Tree Sketching Pipeline



(3)

< 47 ▶

### Part 5

#### Recap and Future Directions

イロト イヨト イヨト イヨト

Leveraging topology in data analysis, ML, and visualization.

- Feature engineering: Brain network applications.
  - Statistical Inference.
  - Regression.
  - Classification.
- ML Algorithms: Learning on Simplicial Complexes.
- Dimension Reduction: Tree alignment and sketching.
- Visualization: plant gene expression.

Leveraging topology in data analysis, ML, and visualization.

- Improving Mapper.
  - Systematic parameter tuning.
  - Fuzzy Clustering, mixture models for cover parameter.
  - Learning lens function through topological optimization.
- Evaluating Arabidopsis as model species.
  - Training ML models on Arabidopsis gene expression.
    - Using full gene set 37K.
    - Using 2671 orthogroup reference genes.
  - Tissue classification accuracy:
    - Arabidopsis: 98%
    - Angiosperms: 64%
  - Is Arabidopsis a good model?

**Proposal:** Hypergraph models and methods for \*omics.

- Genome-wide hypergraph construction.
  - Graph Coarsening.
  - Mapper / Fuzzy clustering.
- Machine learning on hypergraphs.
  - Extending graph ML to hypergraphs.
  - Stochastic processes / dynamical systems on hypergraphs.
  - Physics inspired / Physics based ML models.
- Hypergraph alignment. (Optimal transport!)
- Trained model adaptation through alignment.
- Cross-specie / multi-specie ML models.

## Part 6

References

| Soura | hh | $\nu$ | ande |
|-------|----|-------|------|
| Joura |    | ı a   |      |
|       |    |       |      |

Leveraging Topological Structure

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

### References I

[CN19] Samir Chowdhury and Tom Needham. "Gromov-wasserstein averaging in a riemannian framework". preprint, arXiv:1910.04308. 2019. arXiv: 1910.04308 [math.MG].

- [Li+21] Mingzhe Li, Sourabh Palande, Lin Yan, and Bei Wang. "Sketching merge trees for scientific data visualization". arXiv:2101.03196 [cs.CG]. 2021.
- [MS16] Sayan Mukherjee and John Steenbergen. "Random walks on simplicial complexes and harmonics". In: *Random Structures & Algorithms* 49.2 (2016), pp. 379–405. DOI: 10.1002/rsa.20645.
- [NLC11] Monica Nicolau, Arnold J. Levine, and Gunnar Carlsson. "Topology based data analysis identifies a subgroup of breast cancers with a unique mutational profile and excellent survival". In: Proceedings of the National Academy of Sciences 108.17 (2011), pp. 7265–7270. DOI: 10.1073/pnas.1102826108.

(日)

### References II

[OPW20] Braxton Osting, Sourabh Palande, and Bei Wang. "Spectral sparsification of simplicial complexes for clustering and label propagation.". Journal of Computational Geometry (JoCG), to appear. 2020.

- [Pal+19] Sourabh Palande, Vipin Jose, et al. "Revisiting abnormalities in brain network architecture underlying autism using topology-inspired statistical inference.". In: *Brain Connectivity* 9.1 (2019), pp. 13–21.
- [Pal+22] Sourabh Palande, Joshua A.M. Kaste, et al. "The topological shape of gene expression across the evolution of flowering plants". bioRxiv:2022.09.07.506951. 2022. DOI: 10.1101/2022.09.07.506951.
- [PR16] Ori Parzanchevski and Ron Rosenthal. "Simplicial complexes: Spectrum, homology and random walks". In: Random Structures & Algorithms 50.2 (2016), pp. 225–261. DOI: 10.1002/rsa.20657.

< 日 > < 同 > < 三 > < 三 > <

- [Rat+19] Archit Rathore et al. "Autism classification using topological features and deep learning: a cautionary tale.". In: Medical Image Computing and Computer Assisted Intervention (MICCAI). Springer International Publishing, 2019, pp. 736–744.
- [Won+16] Eleanor Wong et al. "Kernel partial least squares regression for relating functional brain network topology to clinical measures of behavior". In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). IEEE, 2016, pp. 1303–1306. DOI: 10.1109/isbi.2016.7493506.

## Part 7

Extra Slides

Sourabh Palande

Leveraging Topological Structure

54 / 54