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ABSTRACT

The ever-increasing size and complexity of data pose fundamental challenges to existing

machine learning techniques, which are typically designed to work with data in vector

forms. We believe that topological data analysis (TDA) can provide a different perspective

to address these challenges. TDA is a multidisciplinary field that studies the topological

structures of data. TDA techniques can be particularly powerful in handling data modeled

as trees, graphs, simplicial complexes, hypergraphs, or ensembles of these objects.

The theme of this dissertation is to bring together the fields of TDA and machine

learning. Throughout this dissertation, we describe ways to integrate ideas from TDA

into different stages of a machine learning pipeline. We first present unsupervised and

semisupervised learning algorithms that leverage the topological structure of the data.

Then, we present methods to compare complex objects such as graphs and their ensembles.

We describe ways to extract topological summaries from these objects and utilize them as

input features in machine learning. Our specific contributions include the following:

• We present a spectral sparsification algorithm for simplicial complexes as well as

algorithms for unsupervised and semisupervised learning on simplicial complexes,

specifically, spectral clustering and label propagation.

• We present ways to utilize topological features of brain networks in statistical infer-

ence and machine learning tasks such as classification and regression.

• We present methods to evaluate the structural variability within an ensemble of

graphs arising from graph reduction algorithms.

Our vision is to develop new machine learning frameworks that seamlessly integrate

ideas from TDA.
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CHAPTER 1

INTRODUCTION

We live in the age of data. Various scientific and engineering fields are continually

generating large volumes and increasingly complex forms of data. The size and complexity

of such data pose fundamental challenges to existing machine learning techniques, which

are often designed to work with data in vector forms. We believe that topological data

analysis (TDA) can provide a different perspective to address these challenges.

TDA is a multidisciplinary field that focuses on capturing the topological structures

of the data. TDA techniques are particularly useful for characterizing and summarizing

complex forms of data such as trees, graphs, simplicial complexes, hypergraphs, or ensembles

of these objects. The goal of this dissertation is to integrate ideas from TDA into different

stages of machine learning pipelines.

1.1 Overview

In this dissertation, we present ways to utilize the topological structures of the data

for machine learning with complex data types such as simplicial complexes and collections

of graphs. Our contributions are summarized in Figure 1.1. First, in Chapter 2, we work

with data modeled as simplicial complexes, which are generalizations of graphs. Graphs

capture relationships between pairs of objects in the dataset. Many learning algorithms that

take advantage of the structure encoded in these pairwise relationships have been proposed

in the literature, such as spectral clustering and label propagation. However, in many

instances, encoding only the pairwise relationships is not enough. For example, in the case

of social networks or email communication networks, the way information is disseminated

from person to person differs from how it is disseminated between different groups.

Simplicial complexes allow us to capture higher order relationships among two, three,

or more objects in the dataset simultaneously. However, researchers have only recently

started exploring learning algorithms for simplicial complexes. In Chapter 2, we present
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FIGURE. 1.1. Overview of the dissertation.

semisupervised and unsupervised learning algorithms, such as spectral clustering and label

propagation, that leverage the topological structures encoded in the higher order relation-

ships encoded in the simplicial complex. Analogous to graph algorithms, the learning

algorithms for simplicial complexes scale with the size of the simplicial complex. Therefore,

we also present a sparsification algorithm that reduces the size of the simplicial complex

while preserving its spectral properties. A large part of this work is based on the following

publication:

• B. OSTING, S. PALANDE, AND B. WANG1, Spectral sparsification of simplicial

complexes for clustering and label propagation, Journal of Computational Geometry

(JoCG), 11 (2020), pp. 176–211.

Next, in Chapter 3, we work with datasets where individual samples are modeled as

networks. We apply persistent homology, an essential TDA technique, to extract topological

features from these networks and utilize them as inputs in machine learning. We apply these

ideas to study structural and functional brain networks in autism spectrum disorders (ASD).

The structural or functional relationships between different brain regions are often modeled

as networks in ASD studies. We extract the topological features from these networks

1Authors are listed alphabetically
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and utilize them in statistical inference or machine learning tasks such as regression and

classification. The work presented in Chapter 3 is based on the following three publications:

• S. PALANDE, V. JOSE, B. ZIELINSKI, J. ANDERSON, P. T. FLETCHER, AND

B. WANG, Revisiting abnormalities in brain network architecture underlying autism

using topology-inspired statistical inference, Brain Connectivity, 9 (2019), pp. 13–21.

• E. WONG, S. PALANDE, B. WANG, B. ZIELINSKI, J. ANDERSON, AND P.

T. FLETCHER, Kernel partial least squares regression for relating functional brain

network topology to clinical measures of behavior, In 2016 IEEE 13th International

Symposium on Biomedical Imaging (ISBI), IEEE, (2016), pp. 1303–1306.

• A. RATHORE, S. PALANDE, J. ANDERSON, B. ZIELINSKI, P. T. FLETCHER,

AND B. WANG, Autism classification using topological features and deep learning:

a cautionary tale, In Medical Image Computing and Computer Assisted Intervention

(MICCAI), Springer International Publishing, (2019), pp. 736–744.

Lastly, in Chapter 4, we once again work with data in the form of an ensemble of

graphs obtained using graph reduction. However, unlike brain networks, we no longer

have correspondences between vertices of the graphs. Graph reduction algorithms are

used to approximate a large graph with a smaller graph, while preserving some basic

properties. Different reduction algorithms can produce slightly different output graphs.

Sometimes, a reduction algorithm employs randomization to improve its running time.

As a result, different runs of the same algorithm can produce slightly different outputs,

even with the same inputs and parameter settings. We present methods to evaluate

the structural variability in an ensemble of reduced graphs obtained from different graph

reduction algorithms or different runs of the same algorithm. These methods have potential

applications in uncertainty quantification and visualization for graph reduction. We may

also be able to use structural variability to compare different graph reduction algorithms.

This part of the dissertation is based on the following manuscript:

• F. LAN, S. PALANDE, M. YOUNG, AND B. WANG, Uncertainty visualization for

graph reduction, In preparation, 2020.



4

1.2 Other Contributions

Apart from work presented in this dissertation, we also contribute to two other projects.

In the first project, we evaluate the reproducibility of graph-theoretic measures and topo-

logical features derived from brain networks across several resting-state functional MRI

preprocessing strategies. We also analyze the relationship between these features and cog-

nitive test scores and personality metrics. We show that topological features are reasonably

robust to variations in preprocessing strategies. We also show that they are significantly

correlated to individual differences in cognition and personality.

• K. L. ANDERSON, J. S. ANDERSON, S. PALANDE, AND B. WANG, Topological

data analysis of functional MRI connectivity in time and space domains, in Connec-

tomics in NeuroImaging, Springer International Publishing, 2018, pp. 67–77.

In the second project, we present TopoAct. This interactive visual analytics system

leverages topological summaries called mapper graphs [115] to summarize the overall shape

of the activation space for a fixed layer of a trained deep learning classifier. We observe

branches and loops in the mapper graphs that correspond to evolving activation patterns.

We find that these topological features are correlated with semantically meaningful differ-

ences between images from different classes.

• A. RATHORE, N. CHALAPATHY, S. PALANDE, AND B. WANG, TopoAct: Ex-

ploring the shape of activations in deep learning, Submitted, arXiv:1912.06332, 2019.

These projects fit into the overall theme of integrating ideas from TDA in machine

learning. However, we do not include them in this dissertation and restrict our discussion

to work mentioned earlier.



CHAPTER 2

SPECTRAL ALGORITHMS FOR

SIMPLICIAL COMPLEXES

In this chapter, we present unsupervised and semisupervised learning and data reduction

methods for simplicial complexes. Specifically, we focus on spectral learning algorithms such

as spectral clustering, label propagation, and spectral sparsification.

In Section 2.1, we give an introduction and describe the motivation behind the work

presented in the chapter. In Section 2.2, we introduce the notation used in this chapter and

give a brief description of relevant algebraic concepts such as effective resistance and spectral

sparsification of graphs. In Section 2.3, we present a spectral sparsification algorithm for

simplicial complexes and prove that the sparsified simplicial complex closely approximates

the spectral properties of the input complex. In Section 2.4, we state and prove a generalized

Cheeger inequality for the weighted simplicial complexes and give a lower bound for the

sparsified simplicial complex. In Section 2.5, we present spectral clustering and label

propagation algorithms for simplicial complexes by modifying the analogous algorithms

for graphs. We also define a random walk on a simplicial complex at a fixed dimension and

establish its equivalence to other random walks proposed in the literature. We showcase

experimental results validating our algorithms in Section 2.6 and conclude with a discussion

and some open questions in Section 2.7.

2.1 Introduction

Understanding large systems with complex interactions and multiscale dynamics is

essential in various social, biological, and technological settings. A common approach

to analyzing such a system is representing it as a graph where vertices represent objects

and (weighted) edges represent pairwise interactions between the objects. A vast arsenal

of methods has been developed to analyze the properties of graphs, which can then be

combined with domain-specific knowledge to infer the system’s properties. These tools
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include graph partitioning and clustering [96, 126, 127], random processes on graphs [53],

combinatorial graph invariants [40], and spectral graph theory [31]. In particular, spectral

methods for graph-based learning have had great success due to their efficiency and good

theoretical guarantees for applications ranging from image segmentation [82] to community

detection [7]. For example, spectral clustering [6, 119] is a graph-based learning method

used for the unsupervised clustering task, and label propagation [123, 132] is a graph-based

learning method for semisupervised regression.

The computational costs associated with naive implementations of many graph-based

algorithms are prohibitive. In this scenario, it is useful to approximate the original graph

with one having fewer edges or vertices while preserving specific properties of interest, known

as graph sparsification. A variety of graph sparsification methods have been developed that

allow for both efficient storage and computation [14, 117, 118]; see [13] for a survey.

It is well known from spectral graph theory that the spectrum of the graph Laplacian

bounds a variety of properties of interest, including the size of cuts (i.e., bottlenecks),

clusters (i.e., communities), distances, various random processes (i.e., PageRank), and

combinatorial properties (e.g., coloring, spanning trees). Spielman and Srivastava developed

a method for graph sparsification using effective resistances of edges that approximately

preserve the spectrum of the graph Laplacian [117]. It follows that this method [13] can

be used to produce a sparsified graph that contains a great deal of information about the

original graph, and, in the graph-based machine learning setting, about the underlying

dataset.

2.1.1 Simplicial Complexes and Data Analysis

Although graphs have been used with great success in many applications, they capture

only pairwise interactions between objects in the dataset. Simplicial complexes allow us to

capture the higher order interactions that occur between three or more objects in complex

datasets [55, 91].

Interest in developing learning algorithms that directly operate on simplicial complexes

is growing. For example, researchers have begun to develop machine learning methods

for simplicial complexes, including methods based on higher order random processes [15,

54, 90], generalized Cheeger and isoperimetric inequalities [56, 121, 98], high-dimensional
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expanders [41, 79, 97], and spectral methods [127, 61].

In this chapter, we extend spectral learning algorithms such as spectral clustering and

label propagation to simplicial complexes. Analogous to spectral graph algorithms, these

algorithms on simplicial complexes are severely limited by the computational costs associ-

ated with massive datasets. Since these algorithms rely on the spectral theory for higher

order Laplacians, it is desirable to develop methods for sparsifying simplicial complexes

that approximately preserve the spectrum of higher order Laplacians. Our main result is

a spectral sparsification algorithm for simplicial complex, based on the graph sparsification

algorithm of Spielman and Srivastava [117].

2.1.2 Contributions

Our contributions are as follows:

• We introduce a generalized effective resistance of simplices by extending the notion of

effective resistance of edges (e.g., [25, 42, 49]), and extend the methods and analysis

of Spielman and Srivastava [117] for sparsifying graphs to simplicial complexes at a

fixed dimension. We prove that our sparsification algorithm approximately preserves

the spectrum of the up-Laplacian; see Theorem 2.1 and Section 2.3.

• We generalize the Cheeger constant of Gundert and Szedlák for unweighted simplicial

complexes [56] to weighted simplicial complexes and show that the Cheeger constant of

the sparsified simplicial complex is bounded below by a multiplicative factor of the first

nontrivial eigenvalue of the up-Laplacian for the original complex; see Corollary 2.2.

• We extend spectral learning algorithms such as spectral clustering and label propaga-

tion to simplicial complexes. We demonstrate via substantial numerical experiments

that preserving the structure of the up-Laplacian via sparsification also preserves the

results of spectral clustering and label propagation (Section 2.6). These applications

exemplify the utility of our spectral sparsification methods.

• Lastly, we define random walks on simplicial complexes at a fixed dimension. We

also discuss other random walks on simplicial complexes proposed in literature [90, 97]

and show that they are all equivalent to the random walk we define.
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2.2 Background

In this section, we will set out the notation used throughout this chapter. We will

first review the relevant definitions and algorithms for graphs and then give their simplicial

complex analogues.

2.2.1 Spectral Algorithms for Graphs

Let G = (V,E,w) be a connected weighted undirected graph with n vertices and m

edges, with positive edge weights w : E → R+. Let W be an m × m diagonal matrix

with W (e, e) = w(e) = we. Let A ∈ Rn×n be the weighted adjacency matrix such that

A(i, j) = we, where we is the weight of the edge e. A is also referred to as the affinity matrix

or the similarity matrix, where A(i, j) ≥ 0 captures the affinity (i.e., measure of similarity)

between vertices i, j ∈ V . Let D ∈ Rn×n be a diagonal matrix, where D(j, j) =
∑

iA(i, j).

In the case of a binary graph (where edge weights are either 0 or 1), D is simply the degree

matrix, with diagonal elements D(j, j) being the number of edges incident on vertex vj .

The matrix L = D−A is called the graph Laplacian, and the matrix LN = D−1/2LD−1/2

is called the normalized graph Laplacian. Now suppose the edges are oriented arbitrarily. L

can be written as L = BTWB, where B ∈ Rm×n is the signed edge-vertex incidence matrix

defined as

B(e, j) =











0 if vertex j is not on the boundary of edge e

1 if j is e’s head

−1 if j is e’s tail.

2.2.1.1 Spectral clustering. We use the Ng-Jordan-Weiss algorithm [92], given

here as Algorithm 1, to perform spectral clustering of graphs. To cluster the vertices of

G into k clusters, the algorithm first computes a spectral embedding of the vertices of G

into a k-dimensional Euclidean space and then uses the k-means algorithm to cluster the

points in this Euclidean space into k clusters. The spectral embedding is constructed using

the eigenvectors of matrix M = ∆−1/2A∆−1/2 = I − LN . The largest eigenvalues of M

correspond to the smallest eigenvalues of LN , and the matrices have the same eigenvectors.

2.2.1.2 Label propagation on graphs. We describe here a simplified version of

the iterative label propagation algorithm [131] based on the notion of stochastic matrix

(i.e., random walk matrix) P = AD−1. It represents the transition probabilities of the

labels. Given P and an initial label distribution y, we iteratively multiply the vector y
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Algorithm 1: y = Cluster(G, d)

Data: G(V,E,W ): A weighted, undirected graph with |V | = n, d: the number of
clusters

Result: y: A vector of cluster assignments l ∈ {1, 2, . . . , d} for the vertices of G.

Construct matrix A where A(i, j) = the weight of edge eij , A(i, j) = 0 otherwise.
Compute diagonal matrix D ∈ Rn×n, where D(j, j) =

∑

iA(i, j).
M = D−1/2AD−1/2.
Construct matrix X = [u1u2 · · ·ud] ∈ Rn×d where u1, u2, . . . , ud are the eigenvectors
corresponding to the d largest eigenvalues of M (chosen to be orthogonal to each
other in the case of repeated eigenvalues), respectively.

Yij = Xij/
(

∑

j X
2
ij

)1/2
(normalize rows of X to have unit length).

y = kMeans(Y, d).
Return y as cluster assignments for vertices of G.

by P . If the graph is label-connected (i.e., we can always reach a labeled vertex from any

unlabeled one), then P t converges to a stationary distribution x, that is, P tx = x for a

large enough t.

Suppose there are two label classes {+1,−1}. Without loss of generality, assume that

the first l of the n vertices are assigned labels initially, represented as a length-l vector yl.

Given a graph G(V,E) and labels yl, the simplified version of label propagation algorithm

is outlined in Algorithm 2.

Consider P to be divided into blocks as follows:

P =

(

Pll Plu

Pul Puu,

)

where l and u index the labeled and unlabeled vertices with the number of vertices n0 = l+u.

Let y = (yl,yu) be the labels at convergence. Then, yu is given by

yu = (I − Puu)
−1Pulyl.

As long as our graph is connected, it is also label-connected and (I − Puu) is nonsingular.

Therefore, we can directly compute the labels at convergence without going through the

iterative process described in Algorithm 2.

2.2.1.3 Graph sparsification. Algorithm 1 and Algorithm 2 both require comput-

ing the eigenvectors of the graph Laplacian. The computation scales with the number of

edges in the graph. For large input graphs, these computations can be prohibitively expen-

sive. In such cases, it is desirable to approximate the input graph with a smaller, sparser
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Algorithm 2: y = PropagateLabels(G,yl)

Data: A weighted, undirected graph G with n vertices, vector yl containing labels
∈ {+1,−1} of first l vertices.

Result: A vector y of label assignments l ∈ {+1,−1} for all the vertices of G.

Order the vertices of G so that labels yl correspond to the first l vertices.
Construct matrix A where A(i, j) = the weight of edge (i, j), A(i, j) = 0 otherwise.
Compute diagonal matrix D ∈ Rn×n, where D(j, j) =

∑

iAij .
P = AD−1.
Initialize y(0) = (yl,0), t = 0.
Repeat until convergence:

y(t+1) = Py(t),

y
(t+1)
l = y

(t)
l .

Return sgn(y(t)) as label assignments for vertices of G.

graph, perform computations on this smaller graph, and use the result to approximate a

solution for the input graph. Graph sparsification is the process of approximating a graph

with another graph, with fewer edges, while preserving certain properties.

There are several different notions of graph sparsification. Spectral sparsification, as

the name suggests, attempts to preserve the spectral properties of the associated graph

Laplacian. We say H = (V, F, u) is a sparse ε-approximation of G = (V,E,w) if F ⊂ E and

(1− ε)LG � LH � (1 + ε)LG, (2.1)

where LG and LH are the graph Laplacians of G and H, respectively, and the inequalities

are to be understood in the sense of the semidefinite matrix ordering, i.e.,

(1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx ∀x ∈ Rn.

The “sparsification by effective resistances” algorithm proposed by Spielman and Sri-

vastava [117], described in Algorithm 3, is most relevant to our approach. The effective

resistance Re at an edge e is the energy dissipation (potential difference) when a unit

current is injected at one end and removed at the other end of e. Let us define the matrix

R := B(L)+BT = B(BTWB)+BT , where L+ is the Moore-Penrose pseudoinverse of L.

The diagonal entry R(e, e) of R, is the effective resistance Re across e.

In practice, computing R exactly as described in Algorithm 3 would be at least as

expensive as performing spectral clustering on the input graph directly. However, Spielman



11

Algorithm 3: H = SparsifyGraph(G, q)

Data: A weighted, undirected graph G, and an integer q.

Result: A weighted, undirected graph H, which is a sparse ε-approximation of G

Sample q edges independently with replacement according to the probability

pe =
w(e)R(e, e)

∑

ew(e)R(e, e)
,

and add sampled edges to H with weight w(e)/qpe. If an edge is chosen more than
once, the weights are summed.

and Srivastava [117] showed that a constant factor approximation of the effective resistances

is sufficient to obtain a good graph sparsifier. They also provided a nearly linear time

algorithm to compute the approximate effective resistances.

2.2.2 Simplicial Complexes

With the various matrices defined for graphs in mind, we will now define their simplicial

complex analogues. A simplicial complex K is a finite collection of simplices such that

every face of a simplex of K is in K, and the intersection of any two simplices of K is a

face of each of them [91]. The 0-, 1-, and 2-simplices correspond to vertices, edges, and

triangles. An oriented simplex is a simplex with a chosen ordering of its vertices. Consider

an oriented (k + 1)-simplex τ = [v0, . . . , vk+1] of K where v0 < · · · < vk+1 is the vertex

ordering. σ = τ\{vj} is the k-simplex obtained from τ by omitting vertex vj . The oriented

incidence number [τ : σ] of a k-simplex σ of K is defined as (−1)j if σ = τ\{vj} for some

j = 0, . . . , k + 1 and 0 if σ 6⊆ τ . For the remainder of this paper, we will assume K

is an oriented simplicial complex on a vertex set V = {v1, v2, . . . , vn}. Sk(K) denotes the

collection of all oriented k-simplices of K and nk = |Sk(K)|. The p-skeleton of K is denoted

as K(p) :=
⋃

0≤k≤p Sk(K). Let dimK denote the dimension of K. For a review of simplicial

complexes, see [51, 55, 91].

2.2.2.1 Laplace operators on simplicial complexes. The k-th chain group of a

complex K with coefficient in R is a vector space over the field R with basis Sk(K). We

denote it by Ck(K) or Ck(K,R). The k-th cochain group Ck(K) = Ck(K,R) is the dual

of the chain group, defined by Ck(K) := Hom(Ck(K),R), where Hom(Ck(K),R) denotes

all homomorphisms of Ck(K) into R. The coboundary operator δk : C
k(K) → Ck+1(K)
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is defined as (δkf)(τ) =
∑

σ∈Sk
[τ : σ]f(σ). Let Zk = Ker(δk) and Bk = Im(δk−1) denote

the groups of k-dimensional cocycles and k-dimensional coboundaries, respectively. The

coboundary operator satisfies the property δkδk−1 = 0, which implies that Bk ⊆ Zk. The

boundary operators, δ∗k, are the adjoints of the coboundary operators,

· · · Ck+1(K)
δk
⇆

δ∗k

Ck(K)
δk−1

⇆

δ∗k−1

Ck−1(K) · · ·

satisfying (δka, b)Ck+1 = (a, δ∗kb)Ck for every a ∈ Ck(K) and b ∈ Ck+1(K), where (·, ·)Ck

denotes the scalar product on the cochain group. We denote by Zk = Ker(δ∗k) and Bk =

Im(δ∗k+1), the groups of k-dimensional cycles and k-dimensional boundaries, respectively.

Following [61], we define three combinatorial Laplace operators that operate on Ck(K)

(for the k-th dimension), namely, the up-Laplacian,

Lupk (K) = δ∗kδk,

the down-Laplacian, Ldown
k (K) = δk−1δ

∗
k−1, and the Laplacian, Lk(K) = Lupk (K)+Ldown

k (K).

All three operators are self-adjoint, non-negative, and compact, and they enjoy a collection

of spectral properties, as detailed in [61]. We restrict our attention to the up-Laplacians.

2.2.2.2 Explicit expression for the up-Laplacian. To make the expression of the

up-Laplacian explicit, we need to choose a scalar product on the coboundary vector spaces

that can be viewed in terms of weight functions [61]. In particular, the weight function w

is evaluated on the set of all simplices of K, w :
⋃dimK

k=0 Sk(K) → R+, where the weight of

a simplex f is w(f) (also denoted as wf ). Let wk : Sk(K)→ R+. Then, Ck(K) is the space

of real-valued functions on Sk(K), with inner product (a, b)Ck :=
∑

f∈Sk(K)wk(f)a(f)b(f),

for every a, b ∈ Ck(K).

Choosing the natural bases, we identify each coboundary operator δk with an incidence

matrix Dk. The incidence matrix Dk ∈ Rnk+1 ×Rnk encodes which k-simplices are incident

to which (k + 1) simplices in the complex, and is defined as

Dk(i, j) =











0 if σk
j is not on the boundary of σk+1

i

1 if σk
j is coherent with the induced orientation of σk+1

i

−1 if σk
j is not coherent with the induced orientation of σk+1

i .

Let DT
k be the transpose of Dk. Let Wk be the diagonal matrix representing the scalar

product on Ck(K). The k-dimensional up-Laplacian can then be expressed in the chosen
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bases as the matrix

Lupk (K) = W−1
k DT

k Wk+1Dk.

We also define the following symmetric positive semidefinite matrix:

LK,k = WkLupk (K) = DT
k Wk+1Dk.

Using the notation for the up-Laplacians, we can write the graph Laplacian as L = DT
0 W1D0 =

W0LK,0, by setting B = D0 and W = W1. Vertex weights are usually ignored in the graph

sparsification literature, which is equivalent to setting the corresponding weight matrix W0

to the identity. We can now express R as R1 = D0(L)
+DT

0 = D0(D
T
0 W1D0)

+DT
0 .

2.2.2.3 Affinity matrix of a simplicial complex. For a fixed dimension k, we

define an nk × nk weighted, oriented affinity matrix Aup
k such that for all k-dimensional

simplices σi, σj of the simplicial complex K,

Aup
k (i, j) =











































−wf σi and σj are both faces of the same (k + 1)-simplex f ∈ Sk+1(K) and

both agree or disagree with the orientation of f ,

wf σi and σj are both faces of the same (k + 1)-simplex f ∈ Sk+1(K) and

either σi or σj (but not both) agree with the orientation of f ,

0 if σi and σj are not faces of the same (k + 1)-simplex f

for any f ∈ Sk+1(K) .

For example, consider the clockwise oriented triangle f in Figure 2.1. Let wf be the weight

of f . Edges e1, e2 of f are both oriented clockwise with respect to f . Therefore, they

have a negative affinity of −wf . Edges e1, e3 have different orientations with respect to f .

Therefore they have a positive affinity of wf .

The weighted degree of a k-simplex, deg(σi), is defined as the sum of weights of all

(k + 1)-simplices incident on σi, i.e.,

deg(σi) =
∑

f∈Sk+1; σi⊂f

wf .

We define the nk × nk degree matrix ∆k indexed by k-simplices σi ∈ K as

∆k(i, i) = deg(σi).

With these definitions, we can write the matrix LK,k as

LK,k = ∆k −Aup
k ,
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FIGURE. 2.1. Example of oriented affinity. Edges e1, e2 of triangle f have the same
(clockwise) orientation w.r.t. f . Therefore, they have a negative affinity of −wf , where wf

is the weight of triangle f . Edges e1, e3 have opposite orientations. Therefore, they have a
positive affinity of wf .

2.3 Sparsification of Simplicial Complexes

We now describe a sparsification algorithm for simplicial complexes (Algorithm 4) and

our main theoretical result (Theorem 2.1) along with a detailed proof.

2.3.1 Sparsification Algorithm and the Main Theorem

To generalize the effective resistance for simplices beyond dimension one (i.e., edges),

we consider the operator Rk : C
k → Ck, defined by

Rk = Dk−1(LK,k−1)
+DT

k−1 = Dk−1

(

DT
k−1WkDk−1

)+
DT

k−1,

which is the projection onto the image of Dk−1. The generalized effective resistance of the

k-dimensional simplex, f , is defined to be the diagonal entry, Rk(f, f) (also denoted as

Rf ). For k = 1, the generalized effective resistance reduces to the effective resistance for

graphs [49].

2.3.1.1 Sparsification algorithm. Algorithm 4 is a natural generalization of the

graph sparsification algorithm (Algorithm 3) given by Spielman and Srivastava [117]. The

algorithm sparsifies a given simplicial complex K at a fixed dimension k (while ignoring

all dimensions larger than k). The main idea is to include each k-simplex f of K in the

sparsifier J with a probability proportional to its generalized effective resistance. Specifially,
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Algorithm 4: J = Sparsify(K, k, q)

Data: A weighted, oriented simplicial complex K, a dimension k (where
1 ≤ k ≤ dimK), and an integer q.

Result: A weighted, oriented simplicial complex J that is sparsified at dimension
k, with equivalent (k − 1)-skeleton to K and dim J = k.

J := K(k−1)

Sample q k-dimensional simplices independently with replacement according to the
probability

pf =
wk(f)Rk(f, f)

∑

f wk(f)Rk(f, f)
,

and add sampled simplices to J with weight wk(f)/qpf . If a simplex is chosen
more than once, the weights are summed.

for a fixed dimension k, the algorithm chooses a random k-simplex f of K with probability

pf (proportional to wfRf ) and adds f to J with weight wf/qpf . q samples are taken

independently with replacement, summing the weights if a simplex is chosen more than

once. The following theorem (Theorem 2.1) shows that if q is sufficiently large, the (k− 1)-

dimensional up-Laplacians of K and J are close

Theorem 2.1. Let K be a weighted, oriented simpicial complex, and for some fixed k,

let J = Sparsify(K, k, q), where 1 ≤ k ≤ dimK. Suppose K and J have (k − 1)-th

up-Laplacians LK := Lupk−1(K) and LJ := Lupk−1(J), respectively. Let nk−1 denote the

number of (k − 1)-simplices in K. Fix ǫ > 0 (where 1/
√
nk−1 < ǫ ≤ 1), and let q =

9C2nk−1 log nk−1/ǫ
2, where C is an absolute constant. If nk−1 is sufficiently large, then

with probability at least 1/2,

(1− ǫ)LK � LJ � (1 + ǫ)LK , (2.2)

where the inequalities are to be understood in the sense of the semidefinite matrix ordering.

Equivalently,

(1− ǫ)xTLKx ≤ xTLJx ≤ (1 + ǫ)xTLKx ∀x ∈ Rnk−1 .

A proof of Theorem 2.1 is detailed in the next section.

2.3.2 Proof of the Main Theorem

Our proof closely follows the proof of Spielman and Srivastava [117, Theorem 1]. Fol-

lowing the definitions from Section 2.3, let L = Wk−1LK and L̃ = Wk−1LJ . L and L̃ are
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symmetric positive semidefinite matrices. When our sparsification algorithm is applied to

sparsify K at dimension k, all simplices in K of dimensions up to k − 1 are simply copied

to J along with the corresponding weights so that the weight matrix Wk−1 is the same for

K and J . To prove Theorem 2.1, we will first establish that

(1− ǫ)L � L̃ � (1 + ǫ)L,

and then show that (Equation 2.2) holds if and only if the inequality above holds.

Since L is symmetric, positive semidefinite, L+ and Rk are also symmetric positive

semidefinite matrices. We define the matrix Π = W
1/2
k RkW

1/2
k .

Lemma 2.1. The matrix Π = W
1/2
k RkW

1/2
k defined above has following properties:

1. Π is a projection matrix.

2. Im(Π) = Im(W
1/2
k Dk−1).

3. Π(f, f) = ‖Π(·, f)‖2.

4. Rank(Π) = Tr(Π) ≤ nk−1.

Proof. 1. Observe that

Π2 = (W
1/2
k Dk−1L+DT

k−1W
1/2
k )(W

1/2
k Dk−1L+DT

k−1W
1/2
k )

= (W
1/2
k Dk−1L+)(DT

k−1W
1/2
k W

1/2
k Dk−1)(L+DT

k−1W
1/2
k )

= W
1/2
k Dk−1L+LL+DT

k−1W
1/2
k since L = DT

k−1WkDk−1

= W
1/2
k Dk−1L+DT

k−1W
1/2
k

= Π.

2. First, note that Im(Π) = Im(W
1/2
k Dk−1L+DT

k−1W
1/2
k ) ⊆ Im(W

1/2
k Dk−1). Now, for

any vector y ∈ Im(W
1/2
k Dk−1), there exists a vector x ⊥ Ker(W

1/2
k Dk−1) = Ker(L)

such that y = W
1/2
k Dk−1x. Then,
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Πy = (W
1/2
k Dk−1L+DT

k−1W
1/2
k )(W

1/2
k Dk−1x)

= (W
1/2
k Dk−1L+)(DT

k−1W
1/2
k W

1/2
k Dk−1)x

= W
1/2
k Dk−1L+Lx

= W
1/2
k Dk−1x

= y.

Therefore, y ∈ Im(Π).

3. We have, Π(f, f) = Π2(f, f), and since Π is symmetric,

Π2(f, f) = Π(·, f)TΠ(·, f) = ‖Π(·, f)‖2 .

4. Since Π2 = Π, all eigenvalues of Π are either 0 or 1. Therefore, Rank(Π) = Tr(Π).

Although, since Dk−1 is an nk × nk−1 matrix,

dim Im(Π) = dim Im(W
1/2
k Dk−1) ≤ nk−1.

We also define the nk × nk non-negative, diagonal matrix Qk with entries:

Qk(f, f) =
w̃f

wf
=

# times f is sampled

qpf
,

where the random entry Qk(f, f) captures the “amount” of k-simplex f included in J by

the sparsification algorithm. The weight of simplex f in J is w̃f = Qk(f, f)wf . The weight

matrix can be written as W̃k = WkQk = W
1/2
k QkW

1/2
k . The (k − 1)-th up-Laplacian L̃ of

the sparse complex can be written as

L̃ = DT
k−1W̃kDk−1 = DT

k−1(W
1/2
k QkW

1/2
k )Dk−1.

The scaling by 1/qpf in Qk ensures that EW̃k = Wk. As a result, we have EQk = I and

EL̃ = L.

Lemma 2.2 (Rudelson and Vershynin [109]). Let p be a probability distribution over Ω ⊆ Rd

such that supy∈Ω ‖y‖2 ≤ M and
∥

∥Epyy
T
∥

∥

2
≤ 1. Let y1, y2, . . . , yq be independent samples

drawn from p. Then,

E

∥

∥

∥

∥

∥

1

q

q
∑

i=1

yiy
T
i − EyyT

∥

∥

∥

∥

∥

2

≤ min

{

CM

√

log(q)

q
, 1

}

,

where C is an absolute constant.
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The matrix ΠQkΠ can be expressed as the average of symmetric rank one matrices:

ΠQkΠ =
∑

f

Qk(f, f)Π(·, f)Π(·, f)T

=
∑

f

(# times f is sampled)

qpf
Π(·, f)Π(·, f)T

=
1

q

∑

f

(# times f is sampled)
Π(·, f)
√
pf

Π(·, f)T
√
pf

=
1

q

q
∑

i=1

yiy
T
i .

Vectors yi are drawn independently with replacement from the distribution

y =
1
√
pf

Π(·, f) with probability pf .

The expectation of yyT is given by

EyyT =
∑

f

pf
Π(·, f)
√
pf

Π(·, f)T
√
pf

= ΠΠ = Π.

Therefore,
∥

∥EyyT
∥

∥

2
= ‖Π‖2 = 1. A bound on the norm of y is given by

1
√
pf
‖Π(·, f)‖2 =

√

Π(f, f)
√
pf

=

√

∑

f

wfRk(f, f) =
√

Tr(Π) ≤ nk−1.

Now, using Lemma 2.2, with q = 9C2nk−1 lnnk−1/ǫ
2, we have

E ‖ΠQkΠ‖2 = E

∥

∥

∥

∥

∥

1

q

q
∑

i=1

yiy
T
i

∥

∥

∥

∥

∥

2

≤ C

√

ǫ2nk−1
ln (9C2nk−1 lnnk−1/ǫ2)

9C2nk−1 lnnk−1
≤ ǫ

2
,

for sufficiently large nk−1, as ǫ is assumed to be at least 1/
√
nk−1. Then, by Markov’s

inequality, we have ‖ΠQkΠ−ΠΠ‖2 ≤ ǫ with a probability at least 1/2.

Lemma 2.3. Suppose Qk is non-negative diagonal matrix such that ‖ΠQkΠ−ΠΠ‖2 ≤ ǫ.

Then, for all x ∈ Rnk−1,

(1− ǫ)xTLx ≤ xT L̃x ≤ (1 + ǫ)xTLx

where L = DT
k−1WkDk−1 and L̃ = DT

k−1W
1/2
k QkW

1/2
k Dk−1.
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Proof. For a symmetric matrix A, ‖A‖2 = supy 6=0
|yTAy|
yT y

. Therefore, the assumption that

‖ΠQkΠ−ΠΠ‖2 ≤ ǫ is equivalent to

sup
y∈Rnk ,y 6=0

|yTΠ(Qk − I)Πy|
yT y

≤ ǫ.

Note that if x ∈ ker(W
1/2
k Dk−1), xTLx = xT L̃x = 0 and the claim holds trivially. If

x /∈ ker(W
1/2
k Dk−1), then there is a vector y = W

1/2
k Dk−1x in Im(W

1/2
k Dk−1). Restricting

our attention to such vectors, we have

sup
y∈Im(W

1/2
k Dk−1),y 6=0

|yTΠ(Qk − I)Πy|
yT y

≤ ǫ.

However, from Lemma 2.1 we have Πy = y for any y ∈ Im(W
1/2
k Dk−1). Therefore, we have

sup
y∈Im(W

1/2
k Dk−1),y 6=0

|yTΠ(Qk − I)Πy|
yT y

= sup
y∈Im(W

1/2
k Dk−1),y 6=0

|yT (Qk − I)y|
yT y

= sup
x∈Rnk−1 ,W

1/2
k Dk−1x6=0

|xTDT
k−1W

1/2
k (Qk − I)W

1/2
k Dk−1x|

xTDT
k−1WkDk−1x

= sup
x∈Rnk−1 ,W

1/2
k Dk−1x6=0

|xTDT
k−1W

1/2
k QkW

1/2
k Dk−1x− xTDT

k−1WkDk−1x|
xTDT

k−1WkDk−1x

= sup
x∈Rnk−1 ,W

1/2
k Dk−1x6=0

|xT L̃x− xTLx|
xTLx .

Therefore, if ‖ΠQkΠ−ΠΠ‖2 ≤ ǫ, then

sup
x∈Rnk−1 ,W

1/2
k Dk−1x6=0

|xT L̃x− xTLx|
xTLx ≤ ǫ.

Rearranging the terms, we get for all x ∈ Rnk−1 ,

(1− ǫ)xTLx ≤ xT L̃x ≤ (1 + ǫ)xTLx,

which is equivalent to

(1− ǫ)L � L̃ � (1 + ǫ)L. (2.3)

Now, to show that (Equation 2.2) holds, we use the following elementary lemma (whose

proof is included for completeness):
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Lemma 2.4. For any symmetric positive semidefinite matrices A and B and any positive

definite diagonal matrix D, we have A � B if and only if DA � DB.

Proof. First, assume A � B. Let C = A− B. Then, C � 0. Since D is a positive definite

diagonal matrix, D1/2CD1/2 � 0. However, D1/2CD1/2 is similar to DC, because

D1/2CD1/2 = D−1/2(DC)D1/2.

Therefore, DC has the same eigenvalues as D1/2CD1/2, which means DC � 0 or equiva-

lently, DA � DB.

Now suppose DC � 0. Then, D1/2CD1/2 � 0, due to similarity. However,

C = D−1/2(D1/2CD1/2)D−1/2,

and therefore C � 0 or equivalently, A � B.

We can write the up-Laplacians as LK = W−1
k−1L and LJ = W−1

k−1L̃. Since Wk−1 is a

diagonal matrix of positive weights, W−1
k−1 is a positive definite diagonal matrix. There-

fore, according to Lemma 2.4, if the inequality in Equation 2.3 holds, then the inequality

in Equation 2.2 must also hold, i.e.,

(1− ǫ)LK � LJ � (1 + ǫ)LK .

Corollary 2.1. Suppose Zf are numbers satisfying Zf ≥ Rk(f, f)/α, and for some α ≥ 1,
∑

f wfZf ≤ α
∑

f wfRk(f, f). If we sample as in Sparsify (Algorithm 4) but take each k-

simplex f with probability p′f = wfZf/
∑

f wfZf instead of pf = wfRk(f, f)/
∑

f wfRk(f, f),

then the resulting sparse complex J satisfies

(1− ǫα)L � L̃ � (1 + ǫα)L.

Proof. Note that:

p′f =
wfZf

∑

f wfZf
≥ wfRk(f, f)α

α
∑

f wfRk(f, f)
=

pf
α2

.

Proceeding as in the proof for Theorem 2.1, the new bound on the norm of random vector

y is given by

1
√

p′f

‖Π(·, f)‖2 ≤
α
√
pf

√

Π(f, f) = α
√

Tr(Π).



for Simplicial Complexes

In Section 2.4.1, we show that the Cheeger constant of the sparsified simplicial complex

is bounded below by a multiplicative factor of the first nontrivial eigenvalue of the up-

Laplacian for the original complex (via Theorem 2.3 and Corollary 2.2). We give the proof

of Theorem 2.3 in Section 2.4.2.

2.4.1 Cheeger Constant of Sparsified Simplicial Complexes

We begin with the following definition of the Cheeger constant for an unweighted graph

G = (V,E), which was later used by Gundert and Szedlák [56] to define a Cheeger inequality

for unweighted simplicial complex. We will then generalize this definition to the case of

weighted simplicial complexes.

2.4.1.1 Cheeger constant and inequality for graphs.

h(G) := min
∅(A(V

|V | |E(A, V \A)|
|A| |V \A| , (2.4)

where E(A, V \ A) is the set of edges that connect A ⊂ V to (V \ A) ⊂ V . For a weighted

graph, G = (V,E,w), this definition is typically generalized to

h(G) := min
∅(A(V

|V |
|A| |V \A|

∑

(i,j)∈E(A,V \A)

wij . (2.5)

The Cheeger inequality for graphs takes the form c · λ1(LG) ≤ h(G) ≤ C ·
√

λ1(LG), where

λ1 is the first nontrivial eigenvalue of a graph Laplacian. The constants c and C depend

on the choice of definition for the Cheeger constant and the graph Laplaican; see, e.g., [31,

Chapter 2]. Using the variational formulation for eigenvalues and a suitable test function,

it is not difficult to prove that for the weighted (un-normlized) graph Laplacian, the lower

bound for the Cheeger constant defined in Equation 2.5 is given by 1
2 · λ1(LG) ≤ h(G).

Here, we prove an analogous inequality for weighted simplicial complexes, which we refer to

as the generalized Cheeger inequality. This inequality gives a lower bound on the Cheeger

21

Thus, constant factor approximation of generalized effective resistances introduces the same 

constant factor, α, in the bound on expectation in Lemma 2.2, and consequently in the final 

inequality, but does not change anything else.

2.4 Generalized Cheeger Inequalities 
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constant; an upper bound is not possible for weighted simplicial complexes by the argument

of Gundert and Szedlák [56, p.5].

2.4.1.2 Generalized Cheeger inequality for simplicial complexes of Gundert

and Szedlák. We first recall the generalized Cheeger inequality for simplicial complexes

of Gundert and Szedlák [56]. For a k-dimensional simplicial complex K, its k-dimensional

completion is defined to be

K̄ := K
⋃

{

τ∗ ∈
(

V

k + 1

)

|(τ∗\{v}) ∈ X, ∀v ∈ τ∗
}

.

K̄ is the complete k-dimensional complex when K has a complete (k − 1)-skeleton. The

generalized Cheeger constant for unweighted simplicial complexes is defined to be

h(K) := min
V=

⊔k
i=0 Ai

Ai 6=∅

|V ||F (A0, A1, . . . , Ak)|
|F ∗(A0, A1, . . . , Ak)|

, (2.6)

where F (A0, A1, . . . , Ak) and F ∗(A0, A1, . . . , Ak) are the sets of all k-simplices of K and K,

respectively, with one vertex in Ai for all 0 ≤ i ≤ k.

Theorem 2.2 ([56, Theorem 2]). If λ1(LK) is the first nontrivial eigenvalue of the k-th

up-Laplacian and if every (k − 1)-face is contained in at most C∗ k-face of K, then

|V |
(k + 1) C∗

· λ1(LK) ≤ h(K).

Remark 2.1. Recall that the Cheeger inequality for graphs includes an upper bound of the

Cheeger constant h(G) in terms of λ1(LG). However, as pointed out by Gundert and Szedlák,

λ1(LK) = 0 does not imply h(K) = 0 [56]. Therefore, a higher dimensional analogue of

this upper bound of the form h(K) ≤ C · λ1(LK)
1
m is not possible. We also remark that an

alternative Cheeger inequality is given in [98].

2.4.1.3 Generalized Cheeger constant for weighted simplicial complexes.

Analogous to the generalization of the unweighted Cheeger constant in Equation 2.4 to the

weighted Cheeger constant in Equation 2.5, we define the generalized Cheeger constant for

weighted simplicial complexes by

h(K) := min
V=

⊔k
i=0 Ai

Ai 6=∅

|V |
|F ∗(A0, A1, . . . , Ak)|

∑

X∈F (A0,A1,...,Ak)

wk(X). (2.7)

Observe that Equation 2.7 agrees with Equation 2.6 in the case when all weights are unity.

The following result can be proved analogously to Theorem 2.2:
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Theorem 2.3. Let λ1(LK) be the first nontrivial eigenvalue of the (k − 1)-th weighted

up-Laplacian LK . If every (k − 1)-face σ is contained in at most C∗ k-faces of K̄ and

wk−1(σ) ≥W ∗ > 0, then

|V | W ∗

(k + 1) C∗
· λ1(LK) ≤ h(K).

A proof of Theorem 2.3 is given in Section 2.4.2. Combining Theorem 2.1 and Theo-

rem 2.3 leads to the following result:

Corollary 2.2. In the setting as Theorem 2.1 and Theorem 2.3, we have with probability

1
2

|V | W ∗

(k + 1) C∗
(1− ǫ) · λ1(LK) ≤ |V | W ∗

(k + 1) C∗
· λ1(LJ) ≤ h(J).

Thus, the Cheeger constant of the sparsified simplicial complex, J , is bounded below by a

multiplicative factor of the first nontrivial eigenvalue of the up-Laplacian for the original

complex, K.

2.4.2 Proof of the Cheeger Inequality

Note that Ker(LK) = Ker(δk−1) = Zk−1. Since Bk−1 ⊆ Zk−1, the eigenvectors

corresponding to the nonzero eigenvalues of LK are contained in (Bk−1)⊥. By the Hodge

decomposition, we know that (Bk−1)⊥ = Zk−1. Therefore, λ1(LK) can be formulated as [56,

Sec. 4, Eq. (2)],

λ1(LK) = min
f∈Zk−1

(LKf, f)Ck−1

(f, f)Ck−1

, (2.8)

where (a, b)Ck =
∑

σ∈Sk
wk(σ)a(σ)b(σ) for all a, b ∈ Ck is the inner product defined over

Ck, the space of all real valued functions on Sk. We will omit the subscript Ck from here

on. The key idea in the proof is to find a function f ∈ Zk−1 such that

(LKf, f)

(f, f)
= h(K).

In order to define such a function, we fix a partition A0, . . . , Ak of the vertex set V of K,

which realizes the minimum in Equation 2.7. We will refer to Ai’s as blocks. For simplicity,

we choose a linear ordering on V such that for all w ∈ Ai and v ∈ Aj we have w < v if

i < j. To keep the notation simple, we will simply write F and F ∗ instead of F (A0, . . . , Ak)

and F ∗(A0, . . . , Ak). Note that λ1(LK) does not depend on the choice of orientation.
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Let σ = [v0, . . . , vk−1] ∈ Sk−1. Then f ∈ Ck−1 is defined as

f(σ) =

{

(−1)l|Al| if Al is the unique block not containing any vi,

0 otherwise.

Lemma 2.5. Let LK be the (k − 1)-th weighted up-Laplacian of K and let f be defined as

above. Then,

(LKf, f) = (δk−1f, δk−1f) = |V |2
∑

τ∈F

wk(τ).

Proof. Consider τ = [v0, . . . , vk] ∈ Sk. If τ ∈ F , i.e., if vi ∈ Ai for all i = 0, . . . , k, then

(δk−1)f(τ) =
k

∑

i=0

[τ : τ\{vi}]f(τ\{vi}) =
k

∑

i=0

(−1)i(−1)i|Ai| = |V |.

Now suppose τ 6∈ F , but vi, vj is the only pair of vertices in the same block. Let vi < vj .

Then by our chosen linear ordering, i+1 = j. If l is not equal to i or i+1, then f(τ\{vl}) = 0.

The only nonzero terms are f(τ\{vi}) = f(τ\{vj}). However, these terms cancel out

because [τ : τ\{vi}] = −[τ : τ\{vi+1}].

If three vertices belong to the same block or if there are two pairs of vertices belonging

to the same blocks, or indeed in any other arrangement not covered before, there are at

least two empty blocks and f is zero. Therefore,

(δk−1f)(τ) =

{

|V | if τ ∈ F ,

0 otherwise,

and,

(δk−1f, δk−1f) =
∑

τ∈F

wk(τ)((δk−1f)(τ))
2 = |V |2

∑

τ∈F

wk(τ).

Lemma 2.6. Let f ∈ Ck−1 be as previously defined. Then unique z ∈ Zk−1, b ∈ Bk−1 exist

such that f = z + b. Furthermore,

λ1(LK) ≤ |V |
2

(z, z)

∑

τ∈F

wk(τ).

Proof. Since Zk−1 = (Bk−1)⊥, unique cochains z ∈ Zk−1 and b ∈ Bk−1 exist such that

f = z+ b. Also, (LKz, z) = (LKf, f), because b ∈ Bk−1 ⊆ Ker(LK). The claim now follows

from this fact and using Equation 2.8 and Lemma 2.5.
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Lemma 2.7. Let f ∈ Ck−1 be as previously defined and let g ∈ Ck−2 be arbitrary. For

τ∗ ∈ F ∗, define

q(τ∗, g) :=
∑

σ⊆τ∗,σ∈Sk−1

wk−1(σ)

d(σ)
(f(σ)− δk−2g(σ))

2,

where for all σ ∈ Sk−1, d(σ) = |{τ∗ ⊇ σ|τ∗ ∈ F ∗}|. Then,

1. (f − δk−2g, f − δk−2g) ≥
∑

τ∗∈F ∗ q(τ∗, g).

2. For τ∗ = {v0, v1, . . . , vk} ∈ F ∗ with v0 < v1 < · · · < vk,

q(τ∗, g) ≥ |V |2
∑k

i=0
d(τ\{vi})

wk−1(τ\{vi})

.

Proof. 1. By definition of the inner product,

(f − δk−2g, f − δk−2g) =
∑

σ∈Sk−1

wk−1(σ)(f(σ)− δk−2g(σ))
2.

Now, consider the sum on the right-hand side

∑

τ∗∈F ∗

q(τ∗, g) =
∑

τ∗∈F ∗

∑

σ⊆τ∗,σ∈Sk−1

wk−1(σ)

d(σ)
(f(σ)− δk−2g(σ))

2.

Note that for any σ ∈ Sk−1 such that σ ⊆ τ∗, the corresponding term in the summation

appears exactly d(σ) times. If σ 6⊆ τ∗, then the corresponding term does not appear

at all. Therefore,

∑

τ∗∈F ∗

q(τ∗, g) ≤
∑

σ∈Sk−1

wk−1(σ)(f(σ)− δk−2g(σ))
2.

2. Let τ∗ = [v0, . . . , vk] ∈ F ∗, such that vi ∈ Ai for i = 1, . . . , k. Then,

q(τ∗, g) =
k

∑

i=0

wk−1(τ
∗\{vi})

d(τ∗\{vi})
((−1)i|Ai| − δk−2g(τ

∗\{vi}))2

=
k

∑

i=0

wk−1(τ
∗\{vi})

d(τ∗\{vi})
(|Ai| − [τ∗ : τ∗\{vi}]δk−2g(τ

∗\{vi}))2.

Note that the oriented incidence number [τ∗ : σ] is (−1)i if σ = τ∗\{vi} for i =

1, . . . , k and 0 if σ 6⊆ τ∗. We also observe that
∑k

i=0[τ
∗ : τ∗\{vi}]δk−2g(τ

∗\{vi}) =

δk−1δk−2g(τ
∗\{vi}) = 0. Therefore,

q(τ∗, g) =
k

∑

i=0

wk−1(τ
∗\{vi})

d(τ∗\{vi})
|Ai|2.
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Now, using the following version of Cauchy-Schwarz inequality (Titu’s lemma / Engel’s

form) for positive real numbers,

k
∑

i=0

a2i
bi
≥ (

∑k
i=0 ai)

2

∑k
i=0 bi

,

we obtain

q(τ∗, g) ≥ (
∑k

i=0 |Ai|)2
∑k

i=0
d(τ\{vi})

wk−1(τ\{vi})

=
|V |2

∑k
i=0

d(τ\{vi})
wk−1(τ\{vi})

.

Finally, from Lemma 2.6, recall that f = z+b where z ∈ Zk−1 and b ∈ Bk−1. Therefore,

some g ∈ Ck−2 exists such that f − z = b = δk−2g. By Lemma 2.7,

(z, z) = (f − δk−2g, f − δk−2g) ≥
∑

τ∗∈F ∗

|V |2
∑k

i=0
d(τ\{vi})

wk−1(τ\{vi})

.

Now, if every (k − 1)-face σ of K is contained in C∗ k-faces of K̄ and wk−1(σ) ≥W ∗, then

k
∑

i=0

d(τ\{vi})
wk−1(τ\{vi})

≤ (k + 1)
C∗

W ∗
,

and

(z, z) ≥ |V |
2 |F ∗| W ∗

(k + 1) C∗
.

Using this inequality along with Lemma 2.6, we can write

λ1(LK) ≤ |V |
2 (k + 1) C∗

|V |2 W ∗ |F ∗|
∑

τ∈F

wk(τ).

Recall that we defined the function f by fixing a partition A0, . . . , Ak that realizes the

minimum from Equation 2.7, which means

h(K) =
|V |
|F ∗|

∑

τ∈F

wk(τ),

and we get the stated lower bound on h(K):

|V | W ∗

(k + 1) C∗
λ1(LK) ≤ h(K).

for Simplicial Complexes

We want to extend spectral clustering (Algorithm 1) and label propagation (Algorithm 2)

to simplicial complexes. Such extensions have rarely been studied. We seek the simplest

generalization by replacing the vertex-vertex affinity matrix A with a general simplex-

simplex affinity matrix Ad.

2.5 Spectral Clustering and Label Propagation 
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2.5.1 Algorithms on the Dual Graph

For a fixed dimension k, we can define a dual graph Gk of the simplicial complex K,

where each k-simplex of K becomes a vertex of Gk, and an edge between two vertices of

Gk exists if the corresponding k-simplices are faces of a (k + 1)-simplex of K. The weight

of this edge is same as the weight of the (k + 1)-simplex. The nk × nk weighted adjacency

matrix Adual
k of Gk is defined as

Adual
k (i, j) =

{

wf σi and σj are both faces of the same (k + 1)-simplex f ∈ Sk+1(K)

0 otherwise
.

Recall that the degree of a k-simplex is defined as the sum of weights of its (k + 1)-

dimensional co-faces. Also notice that for every (k + 1)-simplex incident on a k-simplex

σ ∈ K, we have (k + 1) adjacent k-simplices. Therefore, if ∆k is the diagonal weighted

degree matrix of the simplicial complex K at dimension k, then the weighted degree matrix

of the dual graph Gk is given by (k + 1)∆k, and the graph Laplacian of the dual graph is

given by

Ldual
k = (k + 1)∆k −Adual

k .

The matrix Adual
k consists of non-negative elements by definition, whereas Aup

k can

have both positive and negative elements depending on the orientations of the simplices.

Although Adual
k and Aup

k have identical sparsity structures, we can easily verify that they

need not have identical spectra. For spectral clustering and label propagation at dimension

k, we modify Algorithm 1 and Algorithm 2 by replacing the matrices A and ∆ with the

matrices Adual
k and (k + 1)∆k, respectively. The modified spectral clustering and label

propagation algorithms are given in Algorithm 5 and Algorithm 6, respectively.

Let Mk,+ and Mk,− be nk × nk non-negative matrices defined as follows:

Mk,+(i, j) = max(Aup
k (i, j), 0),

Mk,−(i, j) = max(−Aup
k (i, j), 0).

We can write Aup
k = Mk,+−Mk,− and Adual

k = Mk,++Mk,−. In the case of graphs (k = 0),

the weighted adjacency between any two vertices is always non-negative so that Mk,− = 0,

and Aup
0 = Adual

0 . We also have (0 + 1)∆0 = ∆. Therefore, the earlier definitions reduce to

the usual definitions of adjacency and degree matrices for graphs.
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Algorithm 5: y = Cluster(K, k, d)

Data: A weighted, oriented simplicial complex K, a dimension k (where
1 ≤ k ≤ dimK), the number of clusters d.

Result: A vector y of cluster assignments l ∈ {1, 2, . . . , d} for the k-simplices of K.

Construct matrices Adual
k and ∆k.

Compute matrix M , where

M =
1

k + 1
∆

−1/2
k Adual

k ∆
−1/2
k .

Construct matrix X = [u1u2 · · ·ud] ∈ Rn×d where ui’s are the eigenvectors
corresponding to the d largest eigenvalues of M (chosen to be orthogonal to each
other in the case of repeated eigenvalues).

Yij = Xij/
(

∑

j X
2
ij

)1/2
(normalize rows of X to have unit length).

y = kMeans(Y, d).
Return y as cluster assignments for k-simplices of K.

Algorithm 6: y = PropagateLabels(K, k,yl)

Data: A weighted, oriented simplicial complex K, a dimension k (where
0 ≤ k ≤ dimK), a vector yl containing labels ∈ {+1,−1} of first l simplices
of K of dimension k.

Result: A vector y of label assignments l ∈ {+1,−1} for all k-dimensional
simplices of K.

Order the k-simplices of K so that labels yl correspond to the first l simplices.
Construct matrices Adual

k and ∆k.
Compute random walk matrix P , where

P =
1

k + 1
Adual

k ∆−1
k .

Initialize y(0) = (yl,0), t = 0.
Repeat until convergence:

y(t+1) = Py(t),

y
(t+1)
l = y

(t)
l .

Return sgn(y(t)) as label assignments for k-simplices of K.
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For k > 0, if we can assume that the k-simplices and the (k+1)-simplices are oriented in

such a way that the oriented adjacency between any two k-simplices is always non-negative,

then we get Aup
k = Adual

k . However, we cannot always assume that the simplices are suitably

oriented. When Mk,− is not all zeros, Aup
k and Adual

k have distinct spectra. The relation

between these spectra, and consequently, between the spectra of the k-th up-Laplacian of

K and the graph Laplacian of its dual graph Gk is unclear and left for future work.

2.5.2 Relation to Other Random Walks on
Simplicial Complexes

Suppose we normalize the oriented adjacency matrix Aup
k to obtain Ãup

k as follows:

Ãup
k =

1

k + 1
Aup

k ∆−1
k .

Let M̃k,+ and M̃k,− be nk×nk non-negative matrices such that M̃k,+(i, j) = max(Ãup
k (i, j), 0)

and M̃k,−(i, j) = max(−Ãup
k (i, j), 0), respectively, and M̃k,+ − M̃k,− = Ãup

k . The random

walk matrix Ãdual
k for the dual graph Gk is defined as

Ãdual
k =

1

k + 1
Adual

k ∆−1
k .

Also observe that Ãdual
k = M̃k,+ + M̃k,−.

Let us fix k and simplify the notation as follows: Let Au = Ãup
k , Ad = Ãdual

k , M+ = M̃k,+,

and M− = M̃k,−. Therefore, we have

Au = M+ −M−,

Ad = M+ +M−.

Ad is same as the random walk matrix used in our experiments for label propagation. A

different normalization is used in the spectral clustering algorithm to obtain the matrix M ,

which is different but closely related to Ad. Some authors [90, 97] have proposed using the

following random walk matrix P to define a random walk on simplicial complexes:

P =

(

M+ M−

M− M+

)

.

The results of these authors rely on the equality of the form: AuQ = QP , where Q = [I,−I]

(I is the identity matrix). In the following lemma, we show the relationship between the

eigenvectors of Au, Ad, and P . In particular, we observe that the stationary distributions

of the two random walks are closely related.
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Lemma 2.8. Let v =

(

x
y

)

be an eigenvector of P ∈ R2nk×2nk with eigenvalue λ, where

x, y ∈ Rnk . Then, either x+ y or x− y is an eigenvector of Ad ∈ Rnk×nk or Au ∈ Rnk×nk ,

respectively, with the same eigenvalue, λ. Conversely, if u is an eigenvector of Au with

eigenvalue λ, then 1
2

(

u
−u

)

is an eigenvector of P with eigenvalue λ. Similarly, if v is an

eigenvector of Ad with eigenvalue µ, then 1
2

(

v
v

)

is an eigenvector of P with eigenvalue µ.

Proof. To prove the first part, let v =

(

x
y

)

be an eigenvector of P ∈ R2nk×2nk with

eigenvalue λ and let Q = [I,−I] where I ∈ Rnk×nk . Then, AuQ = QP and we get

AuQ

(

x
y

)

= Au(x− y) = QP

(

x
y

)

= λQ

(

x
y

)

= λ(x− y).

Therefore, either (x − y) is a zero vector or it is an eigenvector of Au with eigenvalue λ.

Similarly, let T = [I, I]. Then TP = [(M+ +M−) (M− +M+)] = [Ad Ad] = AdT and we

get

AdT

(

x
y

)

= Ad(x+ y) = TP

(

x
y

)

= λT

(

x
y

)

= λ(x+ y).

Therefore, either (x+ y) is a zero vector or (x+ y) is an eigenvector of Ad with eigenvalue

λ. Note that (x− y) and (x+ y) cannot both be zero simultaneously.

To prove the second part of the lemma, let u be an eigenvector of Au with eigenvalue λ,

i.e., Auu = λu. Then,

P
1

2

(

u
−u

)

=

(

M+ M−

M− M+

)

1

2

(

u
−u

)

=
1

2

(

Auu
−Auu

)

= λ
1

2

(

u
−u

)

.

Therefore, 1
2

(

u
−u

)

is an eigenvector of P with eigenvalue λ. A similar argument shows that

if v is an eigenvector of Ad with eigenvalue µ, i.e., Adv = µv, then 1
2

(

v
v

)

is an eigenvector

of P with eigenvalue µ.

Remark 2.2. Both P and Ad are left stochastic matrices. Therefore, all of their eigenvalues

belong to the interval [−1, 1]. Let v be a stationary distribution of Ad, i.e., v = Adv. By

lemma 2.8, 1
2

(

v
v

)

is a stationary distribution of the random walk defined by P .

Remark 2.3. Eigenvectors of the form

(

u
−u

)

are orthogonal to the eigenvectors of the form
(

v
v

)

, which would mean that Au and Ad are related to subspaces of P that are orthogonal
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to each other. However, P can have an eigenvector of the form v =

(

x
0

)

with eigenvalue

λ. In this case, x must satisfy M+x = λx and M−x = 0, i.e., x must be an eigenvector of

M+ and x must also belong to the kernel space of M−. If such a vector x exists, then it is

an eigenvector of both Au and Ad with the same eigenvalue λ.

2.6 Experimental Validation

In Section 2.6.1, we conduct numerical experiments to illustrate the inequalities bound-

ing the spectrum of the up-Laplacian of the sparsified simplicial complex, proven in Theo-

rem 2.1. In Section 2.6.2, we show the results for spectral clustering and label propagation

on simplicial complexes before and after sparsification. We show that the results obtained

for sparsified simplicial complexes are similar to those of the original simplicial complex. In

both cases, we also include the analogous results for graphs to help illustrate our results on

simplicial complexes in a more familiar context.

2.6.1 Preservation of the Spectrum of the Up-Laplacian

Our sparsification algorithm for simplicial complexes is an extension of the sparsification

algorithm for graphs. Therefore, we begin with a review of graph sparsification [117]. Recall

that if a graph H is an ε-approximation of a graph G and n is the number of vertices in H

and G, then we have the following inequality:

(1− ε)xTLGx ≤ xTLHx ≤ (1 + ε)xTLGx, ∀x ∈ Rn. (2.9)

Subtracting xTLGx from all terms in this inequality, we obtain

−εxTLGx ≤ xT (LH − LG)x ≤ εxT (LG)x, ∀x ∈ Rn. (2.10)

Let λmax(LG), λmax(LH) and λmax(LH − LG) be the maximum eigenvalues of LG and

LH and LH − LG, respectively. Also, let λmin(LG) be the minimum eigenvalue of LG.

Looking at the inequality on the right-hand side of (Equation 2.10), after some algebraic

manipulations, we obtain

λmax(LH − LG) = max
||x||=1

xT (LH − LG)x ≤ ε max
||x||=1

xT (LG)x = ελmax(LG).
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Similarly, for the inequality on the left-hand side of (Equation 2.10), we obtain

0 = −ελmin(LG) = −ε min
||x||=1

xTLGx = max
||x||=1

−εxTLGx

≤ max
||x||=1

xT (LH − LG)x = λmax(LH − LG).

Together, we have the inequality

0 ≤ λmax(LH − LG) ≤ ελmax(LG). (2.11)

Moving from graphs to simplicial complexes, we can obtain the analogous inequality in the

setting of simplicial complex sparsification. Let J be a sparsified version of K following the

setting of Theorem 2.1. Suppose for a fixed dimension k (where 1 ≤ i ≤ dimK), K and J

have (k − 1)-th up-Laplacians LK := LK,k−1 and LJ := LJ,k−1, respectively, we have

(1− ε)xTLKx ≤ xTLJx ≤ (1 + ε)xTLKx, ∀x ∈ Rnk−1 . (2.12)

A similar argument leads to the following inequality:

0 ≤ λmax(LJ − LK) ≤ ελmax(LK). (2.13)

Notice that inequality Equation 2.11 is a special case of the inequality Equation 2.13.

2.6.1.1 Preservation of the spectrum of the sparsified graph Laplacian. To

demonstrate how the spectrum of the graph Laplacian is preserved during graph spar-

sification, we set up the following experiments. Note that graph sparsification of large

graphs is well known; the results described here are used only for comparative purposes. In

particular, we would like to give a simple example to compare similar behaviors in preserving

the spectrum of up-Laplacian for both graphs and simplicial complexes.

Consider a complete graph G with n0 = 40 vertices and n1 = 780 edges. We run multiple

sparsification processes on this graph G and study the convergence behavior based on the

inequality in Equation 2.9. For each sparsification process, we use a sequence of sample

sizes, ranging between 10 and 2n1. For each sample size q, we set ε =
√

n0 log n0/q by

assuming that 9C2 = 1 in the hypothesis of Theorem 2.1. As q varies, we correspondingly

obtain a sequence of varying ε values.

In particular, we run 25 simulations on G. For each simulation, we fix a unit vector x

uniformly randomly sampled from Sn0 and perform 25 instances of experiments. For each
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instance, we apply our sparsification procedure to generate the convergence plot using the

list of fixed sample sizes q and their corresponding ε’s. Specifically, for each sample size,

we obtain a sparse graph H and compute xTLHx and λmax(LH −LG), and we observe the

convergence behavior of these quantities as the sample size increases.

In Figure 2.2, we show the convergence behavior based on the inequality in Equation 2.9.

For a single simulation, we compute the pointwise average of xTLHx across the 25 instances,

and we plot these values as a function of the sample size q, which gives rise to a single

convergence curve in aqua. Then, we compute the pointwise average of the aqua curves

across all simulations, producing the red curve. Since each simulation (for a fixed x) has a

different upper bound curve (1−ε)xTLGx and lower bound curve (1+ε)xTLGx, respectively

(not shown here), the pointwise average of the upper and lower bound curves across all

simulations is plotted in blue. We observe that, on average, these curves respect the

inequality Equation 2.9, that is, the red curve is nested within its approximated theoretical

upper and lower bounds in blue.

FIGURE. 2.2. The result of a numerical experiment illustrating inequalities that control
the spectrum of sparsified graph Laplacians. For an ensemble of vectors, x ∈ Sn0 , and
sparsified graphs, H, we plot the terms in inequality Equation 2.9.
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In Figure 2.3, we illustrate the theoretical upper and lower bounds for λmax(LH − LG)

given in Equation 2.11 as the sample size q increases. In particular, we run a single simu-

lation with 25 instances, computing λmax(LH −LG). Each instance gives us a convergence

curve shown in aqua. We compare the pointwise average of λmax(LH−LG) (in red) with its

(approximated) theoretical upper bound in blue and lower bound (i.e., 0, the x-axis). On

average, the experimental results respect the inequality Equation 2.11. Figure 2.4 illustrates

how the number of edges increases with the number of samples across all instances.

2.6.1.2 Preservation of the spectrum of the up-Laplacian for a sparsified

simplicial complex. To demonstrate that the spectrum of the up-Laplacian is preserved

during the sparsification of a simplicial complex, we set up a similar experiment. We start

with a two-dimensional simplicial complex, K, that contains all edges and triangles on

n0 = 40 vertices (with n1 = 780 edges and n2 = 9880 faces) and a sequence of fixed sample

sizes q. For each sample size q, we solve for ε =
√

n1 log n1/q assuming that 9C2 = 1 in

the hypothesis of Theorem 2.1, to get the corresponding sequence of ε values. With the

simplicial complex K and the sequence of sample sizes fixed, we run 25 simulations, each

FIGURE. 2.3. The result of a numerical experiment illustrating inequalities that control
the spectrum of sparsified graph Laplacians. For an ensemble of sparsified graphs, H, we
plot the terms in the inequality Equation 2.11.
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FIGURE. 2.4. Number of edges in the sparse graph as a function of sample size in the case
of graph sparsification.

simulation consisting 25 instances and a fixed randomly sampled unit vector x as described

previously. This time, however, we sparsify the faces of the simplicial complex by applying

Algorithm 4 with k = 2. In Figure 2.5 and Figure 2.6, we plot the terms in inequalities

describing the spectrum for these sparsified simplicial complexes. In Figure 2.5, following the

same procedure as for graph sparsification, we obtain a plot that respects the Equation 2.12.

The curves in aqua show the pointwise average of xTLJx across all instances in a single

simulation, whereas the red curve represents pointwise average across all instances and all

simulations. Since the random vector x is resampled for each simulation, the upper and

lower bound curves are different for every simulation. In Figure 2.5, we plot their pointwise

average across all simulations as the upper and lower bound curves in blue.

In Figure 2.6, to illustrate Equation 2.13, we run a single simulation with 25 instances.

Each instance gives us a sequence of λmax(LJ − LK) values as a function of sample size.

We plot them as curves in aqua. We compare the pointwise averages of λmax(LJ −LK) (in

red) with its (approximated) theoretical upper and lower bounds in blue. Figure 2.7 shows

how the number of faces scales with the increasing number of samples across all instances.



36

FIGURE. 2.5. The result of a numerical experiment illustrating inequalities that control
the spectrum of the up-Laplacian for sparsified simplicial complexes. For an ensemble of
vectors, x ∈ Sn1 , and sparsified simplicial complexes, J , we plot the terms in inequality
Equation 2.12.

FIGURE. 2.6. The result of a numerical experiment illustrating inequalities that control
the spectrum of the up-Laplacian for sparsified simplicial complexes. For an ensemble of
sparsified simplicial complexes, J , we plot the terms in the inequality Equation 2.13.
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FIGURE. 2.7. Number of faces/triangles in the sparse simplicial complex as a function of
sample size in the case of simplicial complex sparsification.

      Here, we apply spectral clustering and label propagation to simplicial complexes before 

and after sparsification. We demonstrate, via numerical experiments, that preserving the 

structure of the up-Laplacian via sparsification also preserves the results of these two 

spectral algorithms on simplicial complexes.

2.6.2.1 Datasets. For comparative purposes, we consider a graph that contains two 

complete subgraphs, with 20 vertices (and 190 edges) each, that are connected by 64 = 8×8 

edges spanning across the two subgraphs. We refer to this graph, G, as the dumbbell graph; 

it has n0 = 40 vertices and n1 = 444 edges. All edge weights are set to be 1. To compute 

the sparsified graph, the number of samples, q, is set to be 0.5n1.

Similarly, we consider a simplicial complex that contains two complete subcomplexes 

with 10 vertices, 45 edges, and 120 triangles each. The two subcomplexes are connected by 

16 cross edges and 48 cross triangles so that the simplicial complex is made up of n0 = 20 

vertices, n1 = 106 edges, and n2 = 288 triangles. We refer to this simplicial complex, K, as 

the dumbbell complex. The weights on all edges and triangles are set to be 1. To compute 

the sparsified simplicial complex, the number of samples, q, is set to be 0.75n2. We compare

2.6.2 Spectral Clustering and Label Propagation 
for Simplicial Complexes
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the result of spectral clustering on the dumbbell graph to the result on a dumbbell complex.

2.6.2.2 Spectral clustering for simplicial complexes. We first illustrate the

spectral clustering results before and after graph sparsification in Figure 2.8 (a)-(b). Since

graph sparsification preserves the spectral properties of graph Laplacian, we expect it to

also preserve (to some extent) the results of spectral methods, such as spectral clustering.

To apply spectral clustering to higher order simplices, we follow the dual graph approach

proposed in Section 2.5.1. Specifically, we modify the spectral clustering algorithm for

graphs (Algorithm 1) by replacing the vertex-vertex affinity matrix A and the degree matrix

D with an edge-edge affinity matrix Adual
1 and the degree matrix 2∆1, respectively. To

illustrate our edge clustering results, we visualize the resulting clusters in the dual graph.

The results are plotted in Figure 2.8 (c)-(d) for two clusters and Figure 2.9 for three clusters.

FIGURE. 2.8. Spectral clustering of graphs and simplicial complexes. (a)-(b): Spectral
clustering of graphs before and after sparsification. (c)-(d): Spectral clustering of simplicial
complexes into two clusters. In both cases, we observe that the clusters are similar before
and after sparsification.
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FIGURE. 2.9. Spectral clustering of simplicial complexes into three clusters before (a) and
after (b) sparsification.

We observe that our modified spectral clustering algorithm results in clusters that agree

reasonably well before and after sparsification.

2.6.2.3 Label propagation on simplicial complexes. We envision label propa-

gation to be generalized to random walks on higher dimensional simplices, such as edges

and triangles. A direct application of our work is to sparsify the top-dimensional simplices

(e.g., triangles in a two-dimensional simplicial complex) and examine how label propagation

behaves on these top-dimensional simplices of the sparsified representation.

First, we apply label propagation (Algorithm 2) to the dumbbell graph dataset to

demonstrate (Figure 2.10) that preserving the structure of graph Laplacian via sparsification

also preserves the results of label propagation on graphs. Then, we apply the modifed

version (Algorithm 6) to the dumbell complex and show (Figure 2.11) via the dual graph

representation that the results obtained from sparsified simplicial complexes are similar to

those of the original simplicial complex. Figure 2.12 shows a few more instances of label

propagation on the dumbbell complex with different initial labels.

2.7 Discussion

We have presented a spectral sparsification algorithm for simplicial complexes that

preserves the spectral properties of the up-Laplacian. Our work is strongly motivated

by the study of an emerging class of learning algorithms based on simplicial complexes

and those spectral algorithms that operate with higher order Laplacians. We would like to
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FIGURE. 2.10. The results of label propagation on the dumbbell graph: (a) before
sparsification and (b) after sparsification. The red (+1) and blue (-1) represent the given
vertex labels, and the orange (+1) and green (-1) correspond to the propagated vertex
labels.

FIGURE. 2.11. The results of label propagation on simplicial complexes: (a) before
sparsification and (b) after sparsification. The red (+1) and blue (-1) colored vertices
correspond to given edge labels, and the orange (+1) and green (-1) colored vertices
correspond to propagated edge labels.
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FIGURE. 2.12. More instances of label propagation on the edges of the dumbbell shaped
simplicial complex: (a), (c) before sparsification and (b), (d) after sparsification.

understand the benefits and incurred error when such learning algorithms are applied to

sketches of the data. In this section, we discuss some of the crucial challenges and future

research directions, and then discuss possible real-world applications.

2.7.1 Open Problems

First, we discuss two open problems with the work presented in this chapter. We

generalize the notion of effective resistances to higher dimensional simplices. However, the

physical interpretation of the generalized effective resistances remains an open question. We

have proposed an algorithm to sparsify simplicial complexes by their generalized effective

resistances, but we do not yet have an efficient implementation.

2.7.1.1 Challenges for efficient implementation. To compute generalized effec-

tive resistances of i-simplices of K exactly, we need to solve linear systems involving the

up-Laplacian. The best solution is to compute a QR or SVD decomposition of the scaled
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incidence matrix W
1/2
i Di−1, which could be done in O(ni · n2

i−1) time, where ni is the

number of i-simplices and ni−1 is the number of (i− 1)-simplices of K.

Spielman and Srivastava [117] gave an algorithm that can approximate effective resis-

tances and produce the sparse graph inO(m log(r)/ǫ2) time, wherem is the number of edges,

and r is the ratio of the largest to the smallest edge weights. The key to their algorithm

was an efficient symmetric diagonally dominant (SDD) linear system solver [120] that

approximately solves the linear systems involving the graph Laplacian in Õ(m log(1/δ)),

where δ is an error parameter. Recent SDD solvers, using graph-based preconditioners such

as low-stretch spanning trees, have improved the running time even further [64, 35].

However, the up-Laplacians LK,i for i ≥ 1 are not diagonally dominant matrices.

Therefore, these fast SDD solvers may not be applied directly to approximate generalized

effective resistance. Although solving linear systems of higher order Laplacians has been

studied for limited classes of complexes [34, 38, 69], no such solvers exist for up-Laplacians

of arbitrary (nongeometric) simplicial complexes.

Generalizations of spanning trees to higher dimensions may be useful in constructing

fast solvers for up-Laplacians of arbitrary simplicial complexes. Alternatively, we can think

of sparsification using generalized effective resistance as a form of leverage score sampling.

Computation of exact leverage scores has the same time complexity as the computation of

exact generalized effective resistance. However, fast algorithms to compute constant factor

approximations to leverage scores [43, 32] exist, which in theory, can run in o(ni · n2
i−1)

time. However, further analysis is required before we can apply any of these approaches to

approximate generalized effective resistances and make claims about the runtime of such

implementations.

2.7.1.2 Physical interpretation of generalized effective resistance. We be-

lieve the generalization of effective resistance to simplicial complexes, introduced Section 2.3,

may find other applications in analyzing simplicial complexes. Although the generalization

is algebraically straightforward, its interpretation and properties pose many natural and

exciting questions. For example, does it have an interpretation in terms of a random

process, such as effective commute time analogous to the case of a graph (see, e.g., [49])?

Is it related to the minimum spanning objects in the simplicial complex? Does it play a

further role in the spectral clustering of simplicial complexes?
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2.7.2 Future Work

We have proposed spectral algorithms for an arbitrary but fixed, dimension k of a

simplicial complex in this work. A natural extension would be to develop algorithms that

operate on simplices of several dimensions simultaneously.

2.7.2.1 Multidimensional random walks. To propagate labels on k-simplices of a

simplicial complex K, our label propagation algorithm (Algorithm 6) utilizes a random walk

on the dual graph Gk. The k-simplices correspond to the nodes of Gk, and their adjacency

is determined by the shared (k+1)-dimensional co-faces. We can think of this random walk

as a composition of two transitions: first from a k-simplex to one of its (k+1)-dimensional

co-faces, and then from the (k + 1)-simplex to one of its k-dimensional faces.

However, given a simplicial complex K of dimension dimK, we can define a graph

G∗(V ∗, E∗), where we represent each simplex of K as a vertex in G∗. The vertex set V ∗ is

partitioned into dimK +1 partitions such that all k-simplices of K are mapped to vertices

in the kth partition of V ∗. The edges of G∗ represent incidence relations, i.e., a vertex

representing a k-simplex σi is only connected to vertices representing its (k−1)-dimensional

faces and (k + 1)-dimensional co-faces. We illustrate this idea in Figure 2.13, where a

two-dimensional simplicial complex is embedded into a three-partite graph. Now, we can

define a random walks on elements of kth partition of G∗ as excursions from the kth partition

to the (k+j)th (or the (k−j)th) partition and back. These random walks spanning multiple

dimensions can represent more complex stochastic processes. We are interested in studying

the properties of such random walks, their physical interpretations, and applications in

real-world problems such as information propagation.

The random walks described so far in this chapter are defined for a fixed dimension k.

Although the transition probabilities may be defined in terms of shared (k− j)-dimensional

faces or (k + j)-dimensional cofaces, the random walker can transition from one k-simplex

only to another k-simplex. However, we can imagine a random walk on all the vertices of the

graph embedding of K, for example, the vertices of the three-partite graph in Figure 2.13.

Although defining such a random walk is computationally straightforward, its physical

interpretation is difficult since the vertices in different partitions represent simplices of

different dimensions. Therefore, it cannot be treated uniformly.
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FIGURE. 2.13. A two-dimensional simplicial complex (left) and its embedding into a
three-partite graph (right).

2.7.2.2 Multilevel and Hodge sparsification. For sparsification at a fixed di-

mension k, our sparsification algorithm guarantees that the spectrum of Lupk−1(K) will

be approximately preserved. However, when we remove a k-simplex from K, we also

implicitly remove all its higher dimensional cofaces. Consequently, all the up-Laplacians

for dimensions ≥ k will also change after sparsification. We do not yet have a way to

analyze the extent of this change. Ideally, we would like to show that the differences

between up-Laplacians of higher dimensions are also bounded.

We are also interested in performing multilevel sparsification of simplicial complexes; for

example, we would like to sparsify triangles and edges simultaneously while preserving spec-

tral properties of the dimension-0 and dimension-1 up-Laplacians. Multilevel sparsification

is also related to preserving the spectral properties of the Hodge Laplacian. However, such

sparsification is challenging because we would like to maintain the structure of simplicial

complexes simultaneously. Multidimensional random walks mentioned earlier may also

prove useful in this context, in which we use them to sample simplices. We may also

be able to relax our structural constraints to work with hypergraphs instead. Finally, we

are also interested in deriving formal connections between homological sparsification and
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spectral sparsification of simplicial complexes.

2.7.3 Applications

We can use a simplicial complex to model higher order interactions between three

or more objects, which graphs fail to capture. The spectra of the corresponding higher

order Laplacians capture the topology and geometry of the interaction patterns, which are

essential in many applications.

For instance, in sensor networks, three sensors with overlapping coverage areas are

modeled as a triangle; four sensors form a tetrahedron, and so on, thereby forming a

simplicial complex over the set of sensors. Higher order Laplacians of this simplicial

complex can be used to localize holes in coverage and determine redundancies and sparsest

coverages [124].

In the case of social networks, users interact with other users individually as well as in

groups. Pairwise interactions are not sufficient to capture the different interaction patterns

arising from the group settings. We can model such interactions as simplicial complexes.

Researchers have now begun to explore the utility of higher order simplices in analysis tasks

such as community detection [66] and clustering [10].

Random walks on graphs have been used to significant effect in many applications, for

instance, to study human mobility patterns in a transportation network [100] or to study

surfing behavior in the world wide web [86, 29, 12]. In random walks on a graph, the walker’s

next step depends only on the current state. However, modeling the random walker’s past

states in addition to the current and the next state can be beneficial in the aforementioned

applications. For example, consider studying human mobility patterns in air travel [107].

A journey from A to B may consist of multiple layovers. Instead of encoding each leg of

the journey independently, we may want to encode the entire journey as one. In [107], the

authors modeled such journeys using memory nodes. However, we can model such travel

patterns as simplices of a simplicial complex. Such encoding also allows us to differentiate

between a layover and an actual visit. Higher order random walks on such a simplicial

complex can be used to understand the complex dynamics of air travel. In the case of the

world wide web, we can represent the sequence of web pages visited by the user as a simplex.

Then, we can rank the web pages based on the higher order topological structures in the
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resulting simplicial complex [15, 54].

Simplicial complexes allow us to encode higher order patterns in transportation networks

or the world wide web, and analyze human mobility or user’s web surfing behavior in a more

comprehensive way. However, the simplicial complexes arising from these applications can

be large and dense. The spectral sparsification algorithm proposed in Section 2.3.1 can be

applied to reduce the size of these complexes and make learning on them more feasible. In a

more direct application, the sparsification algorithm can be used to determine the sparsest

coverage in a sensor coverage network.

2.7.4 Conclusion

The applications described above illustrate the advantages of using simplicial complexes

to model intricate interaction patterns in the data. There is a growing interest in developing

methods that operate directly on simplicial complexes, leveraging the structural information

they encode. In this chapter, we present spectral algorithms to sparsify simplicial complexes

and perform unsupervised and semisupervised learning tasks. We also provide methods to

study random processes on simplicial complexes. We hope to extend these methods to

hypergraphs and develop a unified framework for spectral methods on data modeled as

graphs (undirected and directed), simplicial complexes, and hypergraphs.



CHAPTER 3

LEARNING WITH TOPOLOGICAL

FEATURES OF NETWORKS

In this chapter, we work with datasets where individual samples are modeled as networks.

We apply techniques from TDA to extract topological features from these networks and use

them to perform various learning tasks. Our goal is to study structural and functional

brain abnormalities in autism spectrum disorders (ASD). We model structural or func-

tional relationships between brain regions as networks, use persistent homology to extract

their topological features, and use these features to perform tasks like statistical inference,

regression, and classification.

In Section 3.1, we give an introduction and describe our motivation. In Section 3.2, we

describe the construction of different brain networks. We also give a brief description of

persistent homology, and describe different ways to represent topological features. Persistent

homology is a core technique from topological data analysis (TDA) that allows us to

summarize the topological features of the brain networks. In Section 3.3, we describe how to

interface these topological features with various learning tasks. In Section 3.4, Section 3.5,

and Section 3.6, we present applications of these techniques to study the structural and

functional brain network abnormalities in autism. Lastly, in Section 3.7, we discuss the

implications of the presented methods and possible directions for future research.

3.1 Introduction

Autism is a complex developmental disorder characterized by impairment in social

interactions, difficulty in verbal and nonverbal communication, and repetitive behaviors.

Although the exact mechanism of its development remains unclear, there is evidence relating

autism to abnormal functional and structural connectivity between brain regions. In this

chapter, we apply persistent homology, a core TDA technique, to extract topological features

of structural and functional brain connectivity networks and explore ways to utilize them in



48

statistical inference, autism classification, and prediction of cognitive and behavioral scores.

3.1.1 Structural and Functional Brain Connectivity

We can identify the structural abnormalities in the brain using voxel-based morphometry

by comparing gray matter and white matter volumes or densities and using cortical thickness

and their respective growth trajectories [112, 135] across diagnostic groups. Although the

gross brain differences have been well documented [37], investigations into specific regional

abnormalities in brain structure have reported conflicting results [122].

Structural covariance MRI (scMRI) maps regions of gray matter that have a statistically

significant correlation with a specific seed region of interest (ROI) across subjects, capturing

the shared developmental or genetic influences between the gray matter region and the seed

ROI [134]. Seeley et al. [113] have used scMRI to demonstrate that specific adult dementias

affect distinct intrinsic connectivity networks (ICNs) and the corresponding gray matter

regions. Using a similar technique, Zielinski et al. [133] have shown that network-specific

structural differences between autism and control groups are consistent with clinical aspects

of the disease and that reported functional abnormalities in autism may have a structural

basis. Several recent studies have applied the scMRI technique to find evidence of network-

specific structural abnormalities in other diseases such as Alzheimer’s [88] and Huntington’s

[87].

Functional MRI scans produce a time series of signals, called BOLD (blood oxygenation

level-dependent) signals, representing the level of activity in gray matter regions of the

brain. Functional connectivity networks constructed from the fMRI time series capture the

level of synchronicity between distinct spatial ROIs of the brain across time. Such networks

have shown promising ability to explain impairments in functional connectivity of the brain

in neuropsychiatric disorders such as autism [1, 11]. Several models that attempt to classify

subjects with autism from control subjects, based on functional connectivity networks,

have been proposed in the literature [2, 94]. Advances in artificial neural networks (NN)

have opened up a new line of research in autism. Various NN models [4, 57, 59] have

been proposed for classification of autistic subjects in recent years. To our knowledge, the

classifier proposed by Heinsfeld et al. [59] has the best classification accuracy at 70.2% on

the Autism Brain Imaging Data Exchange (ABIDE) dataset [20, 39].
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3.1.2 Network Comparison and TDA

Network comparison and machine learning with networks as input samples are not easy

problems to solve. Graph-theoretic measures have been proposed previously to compare

networks [19, 108]. However, a significant drawback of these measures is their reliance

on a fixed topology. These measures are typically based on a binary graph obtained by

thresholding the connectivity matrix. The choice of a threshold is crucial in such analyses.

Different heuristics have been suggested to determine the threshold depending on which

properties of the network are of interest. However, it is often not possible to determine a

single optimal threshold.

TDA [21, 50] of networks goes beyond graph-theoretic analysis by utilizing tools from

computational topology to describe the architecture of networks in more flexible ways. In

particular, it encodes higher order (not just pairwise) interactions in the system and studies

the brain network’s topological features across all possible thresholds. Persistent homology,

a core technique in TDA, is often used to study complex networks such as collaboration [24]

and brain networks [72]. Topological methods have shown promise in modeling transitions

between brain states in functional imaging data using combined information in space and

time [111].

3.1.3 Contributions

In this chapter, we describe applications of persistent homology to study abnormalities

in structural and functional brain connectivity in autism. In particular,

• We propose a novel statistical inference procedure based on topological signatures

derived from the structural brain networks. We apply this procedure to investigate

topological differences in the gray matter structure of the brain. Our results provide

evidence of statistically significant structural abnormalities in autism.

• We propose kernel partial least squares (kPLS) regression to statistically quantify the

relationship between topological features of functional brain networks and behavioral

phenotypes in autism. We show that combining correlations with topological features

gives a better prediction of autism severity than using correlations alone.

• We explore the utility of topological features in the classification of ASD versus
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typically developing control subjects. Once again, we show that combining topological

features with functional correlations typically leads to better classification accuracy.

However, our experiments also show that the improvement in classification accuracy

due to topological features is not always statistically significant. Therefore, we offer

a cautionary tale regarding the limited discriminative power of topological features

derived from fMRI data for the classification of autism.

3.2 Background

Brain networks are the primary objects of interest in this chapter. We utilize the

topological features of the brain networks to perform tasks such as statistical inference,

classification, and regression on a given set of brain networks. In this section, we will

describe how to construct different forms of brain networks and how to compute their

topological features.

3.2.1 Brain Networks

Networks are used to encode pairwise relationships among points in a dataset. The

brain networks we consider in this chapter are modeled as fully connected, weighted,

undirected graphs. We consider two types of graphs, structural correlation graphs (SCGs)

and functional correlation graphs (FCGs). In both cases, the nodes represent different

regions of interest (ROIs) in the brain with an associated vector or a signal. The edge

weights are given by the Pearson correlation coefficients between signals from pairs of nodes.

Alternatively, these graphs can also be represented as correlation matrices. We give a short

description of how to construct each graph below.

3.2.1.1 Structural correlation graphs. We construct structural correlations graphs

(SCGs) from standard clinical MRIs of a group of subjects. These graphs capture the shared

structural influences or structural similarities between pairs of ROIs across the group. The

nodes of an SCG represent gray matter ROIs in the brain. With each region, we associate

a signal formed by the gray matter densities at that location in the MRI scan across

all subjects in the group. We construct the SCG by obtaining signals for all ROIs and

computing Pearson correlation coefficients between signals from pairs of ROI. Figure 3.1

illustrates the construction of SCGs.
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FIGURE. 3.1. Structural correlation graphs (SCGs) encode pairwise correlations between
gray matter ROI intensities across a group of subjects.

We use structural covariance MRI (scMRI) to identify a set of ROIs. scMRI is a

technique that maps gray matter ROIs that have a statistically significant correlation with

a specific seed region across subjects, suggesting shared developmental or genetic influences

between the gray matter ROIs and the seed region [134]. We use this technique to identify

ROIs underlying a specific intrinsic connectivity network (ICN), according to methods

published previously [134]. First, we determine a seed ROI known to anchor a specific

ICN, and then we implement a generalized linear model (GLM) to identify regions that

have covarying gray matter densities with that seed ROI across subjects.

Specifically, for a given seed ROI, we perform separate condition-by-covariate analysis

for each voxel with the mean seed gray matter density as the covariate of interest and the

disease status as the grouping variable. We include total brain volume (TBV) and age

as covariates of no interest. This design enables us to determine the whole-brain patterns

of seed-based structural covariance in a group of subjects. We perform one-sample t-tests

with family-wise error correction to identify regions with significant gray matter density

covariance with the seed ROI across subjects in a diagnostic group. Once the ROIs are

identified based on their structural relationship with a specific seed region, we model the
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structural relationships between all pairs of ROIs as the SCG. The vertices of the SCG

represent gray matter ROIs, and the magnitudes of the Pearson correlation coefficients give

the edge weights.

3.2.1.2 Functional correlation graphs. We construct the functional correlation

graphs from resting-state functional magnetic resonance imaging (rs-fMRI) scans. Through-

out the scan, the rs-fMRI measures the fluctuations in the blood oxygenation level in the

brain’s gray matter regions. These fluctuations, which represent the level of activity in

the brain region, are called the blood-oxygenation-level dependent (BOLD) signals. After

processing the raw scans to remove noise, motion, alignment, and other artifacts, the brains

are mapped to a standard template on which the ROIs are defined. Given a predetermined

set of ROIs, we obtain the corresponding BOLD signals in the form of a time series and

arrange them in a data matrix where rows are indexed by ROIs, and columns are indexed

by time points. FCGs capture the level of synchronicity between distinct spatial locations

across time. To construct FCGs, we compute the Pearson correlation coefficients for all

pairs of rows in the data matrix. Figure 3.2 illustrates the construction of FCGs.

FIGURE. 3.2. Functional correlation graphs (FCGs) encode correlations across time
between BOLD signals from pairs of ROIs.
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3.2.2 Persistent Homology

Persistent homology [44] measures how the topological features of data evolve across a

varying scale parameter α, where connected components, tunnels, and voids are considered

as 0-, 1-, and 2-dimensional features. Here we will illustrate the main idea behind persis-

tent homology and its different representations through a simple example. For a detailed

description, we refer readers to the seminal work on the topic by Edelsbrunner et al. [45],

and to excellent surveys by Carlsson [21] and Ghrist [50].

3.2.2.1 Persistence barcodes and persistence diagrams. In a typical setting,

we begin with a point cloud X ∈ Rd in a metric space, denoted as (X, dX). For some α ≥ 0,

the union of balls of radius α centered at x ∈ X under the metric dX forms a topological

space. As α increases, the union of balls undergoes topological changes, where topological

features appear and disappear. The radius α is often viewed as a time parameter. Persistent

homology associates a life span (i.e., death time minus birth time), the persistence, to the

topological features.

Figure 3.3 shows an example, where X is a point cloud in R2 and dX is the Euclidean

distance metric. As the radius α increases, we keep track of the topological changes in the

union of balls. At time α = 0, each colored point is born (appears) as an independent

connected component. At α = 2.5, the green component merges into the red component

and dies (disappears). Therefore, the green component has a persistence of 2.5. At α = 3,

the orange component merges into the pink component and dies. Hence, it has a persistence

of 3. Similarly, the blue component dies at α = 3.2 and the pink component dies at α = 3.7.

At time α = 4.2, the collection of components forms a tunnel that has a persistence of 1.4.

This tunnel disappears at α = 5.6. The red component born at time 0 never dies, and thus

it has a persistence of ∞.

The topological information of this process can be computed using simplicial complexes

(Figure 3.3(b)) and summarized either as a persistence barcode (Figure 3.3(c)) or a per-

sistence diagram (PD, Figure 3.3(d)). A persistence diagram is a finite multiset of points

in the plane. Each point of the diagram corresponds to a topological feature, and its

coordinates (b, d) specify at which scales the feature appears (birth time b) and disappears

(death time d). For example, the green component (a 0-dimensional feature) is mapped to

a green point (0, 2.5) in the diagram given its birth time b = 0 and death time d = 2.5;
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FIGURE. 3.3. Computing persistent homology of a point cloud in R2. (a) A nested
sequence of topological spaces formed by unions of balls at increasing parameter values.
(b) A sequence of simplicial complexes that captures the same topological information as
in (a). (c) Persistence barcode. (d) 0- and 1-dimensional persistence diagrams (the purple
point) combined.

and the tunnel (a 1-dimensional feature) is represented by a purple point (4.2, 5.6) in the

diagram. A persistence barcode is an equivalent representation in which each topological

feature appears as a horizontal bar that starts at the scale at which the feature appears (b)

and ends at the scale at which the feature disappears (d).

3.2.2.2 Persistence landscapes and persistence images. Persistence landscapes

(PL) [18] transform a persistence diagram into a sequence of piecewise linear functions.

Informally, these functions are obtained by first changing the coordinates of points (b, d) to

((b+ d)/2, (d− b)/2), and then placing tent functions (isosceles triangles) anchored at each

point in the transformed space such that their base is on the x axis and the length of the

base equals the persistence of the point. The envelopes of the union of the tent functions

form the piecewise linear functions that are then sampled uniformly to obtain a discrete

vector representation. See Figure 3.4(b) for an example, where functions λ1 and λ2 are the

piecewise linear functions that form the PL.

A persistence image (PI) [3] is another way of transforming a persistence diagram into

a vector representation. Informally, a PI is a heatmap. First, the coordinates of the points
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FIGURE. 3.4. Different representations of topological features: (a): 1-dimensional persis-
tence diagram. (a): The persistence landscapes of 1-dimensional features of order 1 (λ1, in
blue) and order 2 (λ2, in red). (c)-(d): Transformation of the persistence diagram and the
persistence image of the 1-dimensional features.

in the persistence diagram are changed to (b, p), where b is birth and p = d − b is the

persistence of the feature. Then the PI is constructed as a square grid of pixels, where

the pixel’s intensity is given by the weighted sum of Gaussians centered at the points in

the transformed space. Figure 3.4(c-d) illustrates the transformation of the 1-dimensional

persistence diagram in Figure 3.4(a) and the corresponding persistence image, respectively.

3.2.2.3 Persistent homology of correlation graphs. To apply these persistent

homology computations to a structural or functional correlation graph, we first need to

transform the graph into a point cloud in a metric space. Recall that these graphs have an

equivalent representation as correlation matrices. We use the distance

d(x, y) =
√

1− Cor(x, y)

to define distances between the vertices x, y of the graph, where Cor(x, y) is the correlation,

i.e., the weight of the edge between x and y. Using this distance as the filtration parameter,

we can compute the persistent homology of the correlation graph. Note that we need only

the pairwise distances between the vertices for persistent homology computation. We do

not need to compute embedding of the vertices into a Euclidean space explicitly.

3.2.3 Graph Filtration

Another way to extract topological features at multiple scales from a correlation graph

G is to construct a nested sequence of graphs from G, referred to as the graph filtration.

Let V = {vi | i = 1, . . . , n} be the vertex set of G with n vertices. Let E denote the edge
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set and the edge weights be given by w : E → R+. The edge between vertices vi, vj is

denoted by eij and its weight is denoted by wij . |E| denotes the number of edges. For a

given threshold λ, we obtain a binary graph Gλ by removing edges with weight wij ≤ λ.

The adjacency matrix Aλ = (aij(λ)) is given by

aij(λ) =

{

0 wij ≤ λ,

1 otherwise.

As λ increases, more and more edges are removed from the graph. We can generate a

sequence of thresholds in ascending order, λ0 = 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λq, where q ≤ |E|.

Corresponding to the sequence of thresholds, we get a nested sequence of binary graphs,

referred to as a graph filtration G [73]:

Gλ0 ⊇ Gλ1 ⊇ Gλ2 ⊇ · · · ⊇ Gλq .

We can measure the connectivity of a graph by its 0th Betti number, β0, which is the

number of connected components in the graph. As the threshold λ increases, β0(Gλ) of the

corresponding graph also increases. The number of connected components of the graphs in

filtration G form a monotonic sequence of integers,

β0(Gλ0) ≤ β0(Gλ1) ≤ β0(Gλ2) ≤ · · · ≤ β0(Gλq).

Suppose we start with a connected graph G = Gλ0 . We have β0(Gλ0) = 1 and β0(Gλq) =

|V | = n by construction. The plot of β0(Gλ) as a function of threshold λ is called the β0

curve. We illustrate this idea with a simple example in Figure 3.5.

A finite graph with n vertices can have at most
(

n
2

)

distinct edge weights. If we choose

the set of all the unique edge weights, sorted in ascending order, to be the thresholds, then

with finitely many threshold values, we can estimate the β0 curve for all λ. Computing the

β0 curve for a given graph could follow the standard algorithm for persistent homology [45].

In practice, we use a simpler algorithm to capture the λ values since we are concerned only

with tracking the number of components (clusters) during the filtration. This algorithm

relies on the fact that the thresholds λi at which the number of connected components

β0(Gλi
) changes are precisely the weights of the edges in the maximal spanning tree of the

graph. Therefore, to derive the β0 curve, we need to compute only the maximal spanning

tree of G.
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FIGURE. 3.5. An example of graph filtration. On the left is a sequence of graphs (clockwise)
corresponding to an increasing sequence of thresholds. On the right, we plot the β0 curve:
the number of connected components as a function of thresholds.

3.3 Methods

Topological features such as β0 curves and persistence diagrams are novel ways to

summarize the shape of the data. In this section, we will describe ways to utilize these

features in various learning tasks.

3.3.1 Statistical Inference with Structural Correlation Graphs

Suppose our data consist of clinical MRIs of subjects divided into two diagnostic groups

(samples), autism (ASD) and typically developing controls (TDC). We want to test whether

these two samples come from the same underlying distribution. Specifically, we want to test

whether there are any statistically meaningful differences in the 0-dimensional topology

(connectivity) of the SCGs derived from the two samples. We do this by examining the

equivalence of the corresponding β0 curves.

Let G andH represent the SCGs obtained from autism and control samples, respectively,

with corresponding graph filtrations G and H. We want to test the null hypothesis,

H0 : β0(Gλ) = β0(Hλ) for all λ,

against the alternative,

H1 : β0(Gλ) 6= β0(Hλ) for some λ.
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Since we are dealing with finite graphs, a discrete version of the null hypothesis is stated

as

H0 : β0(Gλi
) = β0(Hλi

) for all λi, i = 1, 2, . . . , q,

with the alternative being

H1 : β0(Gλi
) 6= β0(Hλi

) for some λi, i = 1, 2, . . . , q.

The distance between two graph filtrations G and H with respect to the corresponding

β0 curves can be defined as

Dq(G,H) = sup
0≤i≤q

|β0(Gλi
)− β0(Hλi

)|. (3.1)

Intuitively, Dq measures the largest gap between the two β0 curves. The p-value is the

probability that Dq will take a value equal to or greater than the observed value under the

null hypothesis. In order to determine this p-value, we need the distribution of Dq under

the null hypothesis.

3.3.1.1 Permutation test. A permutation test provides a simple way to estimate

the distribution of Dq under the null hypothesis. Let D∗
q denote the value computed from

the two original samples. To estimate the sampling distribution of Dq, in each iteration,

we pool subjects from both samples, randomly permute subject group labels in the pooled

data, and form two new samples. We construct SCGs for these two samples separately and

apply graph filtration to both SCGs to obtain the corresponding β0 curves. Finally, we

compute the distance Dq between the two curves. Thus, each permutation gives us a new

value of Dq. The p-value is given by the fraction of Dq values greater than or equal to D∗
q .

An exact permutation test would require computing Dq for all possible permutations of

the samples, which is computationally infeasible. Instead, we perform the test on a random

subset of all possible permutations. This random permutation test is not exact. However,

with enough permutations, it can closely approximate the exact test. The p-value p̂ obtained

is an estimate of the true underlying p-value p. For each permutation, the test (Dq ≥ D∗
q)

is a Bernoulli trial with probability of success p. When permutations are independently

sampled from a uniform distribution, p̂ is an unbiased estimator of p. The standard error of

p̂ can be approximated by
√

p̂(1− p̂)/N , where N is the number of permutations performed.
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3.3.1.2 Bootstrap. Permutation tests are widely used to test hypotheses when the

underlying distribution is unknown. The only underlying assumption is that the samples

are exchangeable under the null distribution. However, in complex cases like ours, even that

assumption may be too strong or too difficult to verify. Bootstrap tests are commonly used

to obtain confidence intervals, and they generally have low power compared to permutation

tests. However, they also make much weaker assumptions about the underlying distribution.

Here, we will implement a version of bootstrap to estimate the sampling distribution of Dq.

We once again combine both samples to create one pool of subjects. Then, we generate

two new samples (same size as the original) by sampling subjects with replacement from

this pool and ignoring their original group labels. With these new bootstrap samples, we

proceed to compute the SCGs, the β0 curves, and the distance Dq in the same way as

the permutation test. We compute the p-value as the fraction of Dq values obtained from

the bootstrap samples that are greater than or equal to D∗
q obtained from the original

sample. Note that the only difference between the two tests implemented here is whether

we re-sample from the pooled data with (bootstrap) or without (permutation) replacement.

3.3.2 Kernels for Persistence Diagrams

Classical machine learning algorithms are often designed to work with data in vector

form. Persistence diagrams, however, are multisets of points that do not have a natural

vector representation, i.e., the space of persistence diagrams is not an inner product space

(Hilbert space). Therefore, persistence diagrams cannot be used directly in classical machine

learning. There are two possible solutions to this problem: to apply transformations such

as persistence landscapes or persistence images that admit vector representations, or to

define an inner product (kernel) on the space of persistence diagrams and use the kernelized

versions of learning algorithms. Here, we will describe four kernels for persistence diagrams

proposed in the recent literature.

In what follows, we will denote persistence diagrams by capital letters (A, B, D, etc.).

A persistence diagram A is the disjoint union of a multiset {Ai}Nmax
i=0 and the diagonal set

∆ = {(a, a) | a ∈ R+} counted with infinite multiplicity. Nmax is the largest dimension

of the topological features included the persistence diagram. All points in the diagonal

set have 0 persistence. All points in {Ai}Nmax
i=0 have finite persistence except one point in
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A0, which is not included in any kernel computations. Each set Ai, which is the collection

of points corresponding to i-dimensional features, is also referred to as the i-dimensional

persistence diagram.

3.3.2.1 Persistence scale-space kernel. For two i-dimensional persistence dia-

grams Ai and Bi, the persistence scale-space kernel [105] KS is defined as

KS(Ai, Bi, σ) =
1

8πσ

∑

p∈Ai,q∈Bi

e
‖p−q‖

8σ − e
‖p−q‖

8σ , (3.2)

where ∀ q = (a, b) ∈ Bi, q = (b, a). Here, σ is a tuneable kernel parameter.

3.3.2.2 Persistence-weighted Gaussian kernel. For two i-dimensional persis-

tence diagrams Ai and Bi, the persistence-weighted Gaussian kernel [67] KG is defined

as

KG(Ai, Bi, σ) =
∑

p∈Ai,q∈Bi

w(p)w(q)e−
‖p−q‖2

2σ2 , (3.3)

where w(p) is the weight assigned to the point p. Kusano et al. [67] suggested using w(p) =

warc(p) = arctan(C(d− b)t) as the weight for p = (b, d), where C is a positive constant for

practical purposes, and t is assumed to be greater than the dimension of underlying space.

Here, σ is the tuneable kernel parameter.

3.3.2.3 Sliced Wasserstein kernel. Let Ai and Bi be two i-dimensional persis-

tence diagrams. Given a unit vector θ in R2, let L(θ) = {λθ | λ ∈ R} denote the line and

π(θ, p) denote the orthogonal projection of point p on the line L(θ). To compute the sliced

Wasserstein kernel [23], we first augment the persistence diagram Ai with the orthogonal

projection π∆ of points in Bi and vice versa to obtain two new sets A∗
i and B∗

i . The sliced

Wasserstein distance between these two sets is approximated as

SW (A∗
i , B

∗
i ,M) =

1

π

M
∑

j=1

‖V (A∗
i , θj)− V (B∗

i , θj)‖1. (3.4)

Here, θj = jπ/M − π/2 are the sampled directions, M is the user-defined number of

directions, and V (A∗
i , θj) is the vector of dot products < p, θj > of all points p ∈ A∗

i .

The sliced Wasserstein kernel [23] is then computed as

KW (A∗
i , B

∗
i ,M) = e

−SW (A∗
i ,B

∗
i ,M)

2σ2 . (3.5)

Here, σ is the tuneable kernel parameter.
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3.3.2.4 Persistence Fisher kernel. Let Ai and Bi be two i-dimensional persistence

diagrams with A∗
i and B∗

i defined as in the case the sliced Wasserstein kernel. Given a

bandwidth σ > 0, and a set of points Θ, we can define a smooth and normalized measure

on Ai as [71]

ρAi :=





1

Z

∑

u∈Ai

N(x;u, σI)





x∈Θ

,

where Z =
∫

Θ

∑

u∈Ai
N(x;u, σI) is a normalizing constant, N is a Gaussian function, and

I is the identity matrix. Therefore, each persistence diagram can be regarded as a point

in a probability simplex P := {ρ|
∫

ρ(x)dx = 1, ρ(x) ≥ 0}. The Fisher information metric

between two points, ρi, ρj ∈ P, is defined as

dP(ρi, ρj) = arccos

∫

√

ρi(x)ρj(x)dx.

Le and Yamada [71] defined the Fisher information metric between two persistence diagrams

Ai and Bj as

dFIM (Ai, Bj) = dP(ρA∗
i
, ρB∗

i
),

and the persistence Fisher kernel is defined as

KF (Ai, Bi) = e−tdFIM (Ai,Bi),

where t is a positive scalar and a tuneable kernel parameter.

3.3.3 Regression with Persistence Diagrams

Partial least squares regression (PLS) [84] is a dimensionality reduction technique closely

related to principal component analysis (PCA). It reduces the data X and the target Y

simultaneously in such a way that the covariance between their projections is maximized.

This simultaneous reduction facilitates a better regression fit between X and Y compared

to principal component regression. In our case, the data X are the functional connectivity

features and the targets Y are the behavioral measures. For PLS regression using persistence

diagrams as features, we use the kernelized version of the PLS algorithm (kPLS) proposed

by Rosipal and Trejo [106].

We assume that data X are mapped to an inner product space X by a mapping Φ. Let

K be the inner product matrix, such that K(i, j) = 〈Φ(xi),Φ(xj)〉X for features xi, xj ∈ X.



62

The kPLS algorithm initializes a random unit vector v and repeats the following steps until

convergence: (1) u = Kv, (2) u ← u/ ‖u‖, (3) v = Y Y Tu, and finally, (4) v ← v/ ‖v‖.

To find additional latent vectors, we first set K ← (I − uuT )K(I − uuT ), removing the

variation in the data in direction of u. The regression equation for kPLS is given by

Ŷ = KV (UTKV )−1UTY , where U and V have vectors u and v as columns.

3.3.4 Neural Networks with Persistence Diagrams

To train a neural network with persistence diagrams, we can use the approach proposed

by Hofer et al. [60], where a projection layer is defined as a set of nodes of the neural network

that takes a persistence diagram as input and outputs an n-dimensional vector. We denote

the i-dimensional persistence diagram as Di and a point in the diagram (b, d) ∈ Di. Let

µ = [µx, µy] and σ = [σx, σy] denote the location (mean) and scale (bandwidth) of a

Gaussian distribution in R2. We define sµ,σ,ν as follows:

sµ,σ,ν(x, y) =











e−σ2
x(x−µx)2−σ2

y(y−µy)2 y ∈ [ν,∞)

e−σ2
x(x−µx)2−σ2

y(ln
y
ν
+ν−µy)2 y ∈ (0, ν)

0, y = 0.

Here, ν is a cutoff parameter for handling points with persistence (the difference between

birth and death) close to zero. The projection of the i-dimensional persistence diagram Di

w.r.t to sµ,σ,ν is

Sµ,σ,ν =
∑

(x,y)∈ρ(Di)

sµ,σ,ν(x, y),

where ρ(Di) denotes the set of points obtained from Di after a change of coordinates such

that each point (b, d) ∈ Di is mapped to a point (x, y) = (b+ d, d− b) ∈ ρ(Di). Note that

Sµ,σ,ν maps Di to a scalar value. Now, suppose θ = {(µi,σi)}ni=1 is a set of location and

scale parameters for n structure elements. The projection layer Sθ,ν for Di is composed

of n nodes, where each node corresponds to one structure element (µi,σi) and outputs

the projection Sµi,σi,ν of Di. Each of the n nodes outputs one scalar value, and these

values are concatenated to form the output vector. Note that projection layers are defined

independently for each dimension of the persistence diagram. Hofer et al. [60] showed

that the function sµ,σ,ν(x, y) is stable with respect to the Wasserstein and the bottleneck

distance, and differentiable with respect to the parameters µ and σ, so that gradient descent

can be applied to train the neural network.
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3.4 Statistical Inference with Structural Networks

In this section, we apply the statistical inference procedure for structural correlation

graphs (SCGs), described in Section 3.3.1, to study abnormalities in the brain network

architecture. Specifically, we investigate topological differences in the gray matter structure

captured by SCGs derived from three intrinsic connectivity networks strongly implicated

in autism, namely, the salience network (SN), the default mode network (DMN), and the

executive control network (ECN).

3.4.1 Contributions

Using structural covariance maps, Zielinski et al. [133] have shown the existence of

multidimensional, structure-function relationships. The analysis described in this section

helps summarize these relationships using a robust topological data analysis model. The

SCGs encode all pairwise associations among the ROIs, where the extent of an association

is measured by the magnitude of correlations across subjects. Our results confirm the

significant differences in structural covariance in autism, which is consistent with the findings

of [133].

In particular, our experiments provide evidence of statistically significant differences

in the 0-dimensional topological features of SCGs derived from SN (SN-SCGs), and show

decreased structural covariance among individuals with autism in the integration of frontal

lobe regions with SN hubs in the frontoinsula. Our findings of decreased integration

of salience and executive networks, with increased integration of default regions within

the frontal lobe, align with results investigating functionally defined intrinsic connectivity

networks [1] and suggest that shared developmental influences may underlie the particular

specificity of SN connectivity abnormalities in autism [125].

3.4.2 Methods

We compare 49 male subjects with autism (ASD), aged 3-22 years, to 49 age-, gender-,

and IQ-matched typically developing control subjects (TDC). The groupwise mean age

(standard deviation) is 13.27 (5.07) for ASD subjects and 13.67 (5.53) for TDC subjects. Im-

ages are acquired using a Siemens 3.0 Tesla MRI scanner. Whole-brain isotropic MPRAGE

image volumes are acquired in the sagittal plane using an 8-channel receive-only RF head
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coil, employing standard techniques (TR = 2300 ms, TE median = 3 ms, matrix median

= 256× 256× 160, flip angle = 12◦, voxel resolution = 1 mm3, acquisition time = 9 min 12

sec).

3.4.2.1 Data preprocessing. We derive structural correlation graphs (SCGs) from

the intrinsic connectivity networks (ICNs) previously reported by Zielinski et al. [133, 134].

Customized image analysis templates are created by normalizing, segmenting, and averaging

T1 images using the Statistical Parametric Mapping (SPM8) software according to the

processing pipeline proposed in [5, 129]. First, the images are transformed into standard

space using a 12-parameter affine-only linear transformation and segmented into three tissue

classes representing gray matter, white matter, and cerebrospinal fluid. Then, smoothly

varying intensity changes, as well as artifactual intensity alterations resulting from the

normalization step, are corrected for using a standard modulation algorithm within SPM8.

Finally, the resulting segmented maps are smoothed using a 12-mm full-width at half-

maximum Gaussian kernel.

In the scMRI analysis, a two-pass procedure is utilized, wherein study-specific templates

are first created by segmenting our sample using a canonical pediatric template. Then,

tissue-specific prior probability maps are created from our sample. The tissue compartments

are then resegmented using this sample-specific template so that the age range of our sample

precisely matches that of the template(s) upon which the ultimate segmentations are based.

3.4.2.2 Structural correlation graphs and statistical inference. We want to

construct SCGs that capture structural relationships, across subjects, between all pairs of

gray matter regions, from a predefined set of regions. We begin by constructing a whole

brain SCG as follows: 1-mm spheres are placed at grid points of a uniform grid on the

entire preprocessed image volume. After applying the gray matter mask, we obtain a set

of 7266 regions. The whole-brain SCG (denoted Global-SCG) is constructed by computing

correlations, across subjects, between all pairs of these regions.

To study network-specific structural relationships, 4-mm-radius spherical seed ROIs are

selected within the right frontoinsular cortex (R FI) [113], the right dorsolateral prefrontal

cortex (R DLPC) [114], and the right posterior cingulate cortex (R PCC) [46]. These regions

anchor the salience network (SN), the executive control network (ECN), and the default

mode network (DMN), respectively [113, 46].
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For each diagnostic group and each seed ROI, we obtain the set of regions covarying with

the seed ROI, following the process described in Section 3.2.1. The structural covariance

maps corresponding to the seed ROI are shown in Figure 3.6(a)-(c). Further comparisons

in Figure 3.7 show that the maps for two diagnostic groups do not entirely overlap. Some

regions present on the map for the control group are absent on the map for the autism

group. Conversely, some regions are present only on the map for the autism group but not

on the map for the control group. Table 3.1 lists the number of regions present in controls

but not in autism, in autism but not in controls, and in both as well as in either autism or

control. A network-specific set of ROIs is given by the union of all regions covarying with

the corresponding seed ROI, in either the autism group map or the control group map.

Thus, we have one Global set of ROIs and three network-specific sets of regions. For

each set of ROIs, we compute the group level SCGs and perform the random permutation

test as described in Section 3.3.1. We perform one million permutations in the case of

network-specific SCGs and 10, 000 permutations in the case of the Global-SCG (due to

computational constraints). We also perform the bootstrap test as described in Section 3.3.1

with one million bootstrap samples in the case of network SCGs and 10, 000 in the case of

the Global-SCG.

FIGURE. 3.6. Structural covariance maps with seed in R FI, R DLPC, and R PCC,
anchoring SN ((a)), ECN ((b)), and DMN ((c)), respectively. Red represents the autism
group map; blue represents the control group map.
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ECN

SN DMN-posterior (DMN)

(a)

(b)

DMN-anterior

(d)

(c)

FIGURE. 3.7. scMRI maps are further illustrated here with red to yellow (autism) and dark
blue to light blue (control) color maps. The color gradation indicates increasing statistical
significance. The overlapping regions among the autism and control groups are highlighted
in green. Note for (c) and (d): Our data consist of subjects with an average age of about
13 years. The underlying structure of the DMN is not fully developed at this age. We
include two DMN maps with different seeds to show that the posterior part (c) is not yet
integrated with the anterior part (d). In our analysis, we use the posterior covariance map
(c), which corresponds to the most common seed for DMN in adults (R PCC).

TABLE. 3.1. The number of ROIs identified from scMRI map for a given seed region. The
last column shows the number of nodes in the corresponding SCG.

Controls only Autism only Both Either

R PCC (DMN-SCG) 9 21 9 39

R FI (SN-SCG) 21 1 10 32

R DLPC (ECN-SCG) 22 5 12 39

3.4.2.3 Type I error rate for permutation test. The number of permutations

in an exact permutation test depends on the number of subjects in the sample. Our random

permutations test closely approximates this exact test. However, note that the test does not

take into account the number of ROIs. To check whether our test is robust to an increasing

number of ROIs, we have implemented the following simulation.

We generate two m×n data matrices (m is the number of subjects, and n is the number

of ROIs), where each element is randomly generated from a standard normal distribution
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so that both the samples (data matrices) come from the same underlying distribution. We

compute the SCGs from these data matrices and perform the random permutations test as

described in section Section 3.3.1. Since the samples’ underlying distribution is the same,

rejecting the null hypothesis would be a type I error.

We keep the number of subjects m = 100 fixed through the whole simulation. Then

we set the number of ROIs n = 10, 50, 100, 500, 1000, respectively. For each value of n, we

perform 100 random permutation tests as described in the previous paragraph to find the

proportion of tests resulting in type I error. Table 3.2 shows the findings. At 0.05 level

of significance, our test is more conservative, meaning it is much less likely to get false

positives.

3.4.3 Results

We apply the random permutation test and the bootstrap test to compare SCGs across

groups of subjects with autism (ASD) and typically developing control subjects (TDC).

We begin by comparing the global SCGs composed of 7266 gray matter regions in the

preprocessed images. Then, for closer analysis, we compare the SCGs generated with seed

ROIs anchoring the three ICNs (SN, ECN, and DMN), referred to as SN-SCG, ECN-SCG,

and DMN-SCG. These are much smaller SCGs, composed of 32, 39, 39 ROIs, respectively

(see Table 3.1). Recall that the structural covariance maps for the autism and the control

groups overlap in very few regions. We construct and compare SCGs derived from sets of

regions present in either control or autism. The β0 curves corresponding to the global SCGs

and the seed-specific SCGs are shown in Figure 3.8.

Table 3.3 lists the estimated p-values obtained from the random permutation tests along

with the standard errors in the estimation. Also note that the number of permutations is

sufficiently large in each case so that the estimation standard errors are small and not likely

to affect the outcomes of the permutation tests.

TABLE. 3.2. Type I error rate for increasing number of ROIs.

number of ROIs 10 50 100 500 1000

Error rate 0.01 0.02 0.03 0.05 0.03
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FIGURE. 3.8. β0 curves from Global SCGs as well as SN-SCGs, ECN-SCGs, and
DMN-SCGs, generated from regions present in either autism (red) or controls (blue),
respectively.

TABLE. 3.3. Estimated p-values for random permutation test on SCGs and corresponding
standard errors.

Global-SCG DMN-SCG SN-SCG ECN-SCG

p-value estimate 0.3985 0.3658 0.00614 0.1118

standard error 0.004895 0.000481 7.81172× 10−5 0.000315
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Table 3.4 lists the p-values obtained from the bootstrap test. Note that the conclusion

from both tests is comparable at the 0.05 level of significance. By combining topological data

analysis with statistical inference, our results provide evidence of statistically significant

network-specific structural abnormalities in autism SN-SCGs.

Figure 3.9 shows a comparative visualization of the two SN-SCGs that correspond to

ASD and TDC groups, respectively, at the threshold λ = 0.8174. This is the threshold at

which the gap between the corresponding β0 curves is the largest (Dq = 21, with β0 being

6 and 27, for ASD and TDC, respectively).

TABLE. 3.4. Bootstrap test on SCGs: p-values.

Global-SCG DMN-SCG SN-SCG ECN-SCG

p-value 0.3685 0.3970 0.0073 0.0890

FIGURE. 3.9. SN-SCG at threshold λ = 0.8174 that corresponds to D∗
q for both ASD

(left) and TDC (right) groups. The ROIs (4mm spheres) are grouped by anatomical
regions in which they are placed as follows : S - SMA, SFG - sup frontal gyrus, FP -
frontal pole, MFG - middle frontal gyrus, PF - post fusiform, AF - anterior Fronto-In-
sular, LO - Lateral Occipital, TP - Temporal pole, MFC - medial frontal cortex, IFG
- inferior frontal gyrus, ITG - inferior temporal gyrus, AP - anterior paracingulate, P -
paracingulate, AC - anterior cingulate, MF - medial frontal (ventromedial prefrontal cortex).
Image courtesy of Yiliang Shi.
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The visualization shows that the gray matter densities are much less correlated across

the ASD subjects compared to the TDC subjects. The most likely reason behind these

differences is that there is more idiosyncrasy in the autism cohort in which regions show

greater or lesser cortical thickness or subtle differences in gyri or sulci positions. This

idiosyncrasy might be the most reliable difference in autism, meaning that each ASD case

is unique, different from the group mean values in some way.

3.5 Regression with Functional Networks

In this section, we utilize topological features in the form of persistence diagrams to

analyze the relationship between functional brain connectivity and behavioral phenotypes.

3.5.1 Contributions

We propose a novel method to analyze the relationship between functional brain connec-

tivity and behavioral phenotypes. First, we extract persistence diagrams from the functional

correlation graphs and compute the scale-space kernel defined in Section 3.3.2. Then, we

use kernel partial least squares (kPLS) regression (described in Section 3.3.3) to statistically

quantify the relationship between persistence diagrams and behavior measures. The kPLS

regression model also provides a simple way to combine topological features with other

types of features through linear combinations of kernels. We test the ability of our proposed

model to predict autism severity (ADOS scores) and show that combining correlations with

topological features gives a better prediction of autism severity than using correlations

alone.

3.5.1.1 My contribution. This is a collaborative work. My main contributions

include computing topological features and utilizing the scale-space kernel in the regression

model.

3.5.2 Methods

We apply kPLS regression to predict autism severity using topological features derived

from FCGs. Autism severity is measured by the Autism Diagnostic Observation Schedule

(ADOS) score, which is an evaluation for autism based on observed social and communica-

tion behaviors. Typically, subjects with an ADOS score > 8 are diagnosed with ASD. As

a baseline, we also use the pairwise correlations from the associated correlation matrix as
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predictors in the kPLS regression. Our results show that combining the correlation features

with the topological features improves the predictive power of the kPLS.

3.5.2.1 Data and preprocessing. We use data from the Autism Brain Imaging

Data Exchange (ABIDE) [20], which aggregates rs-fMRI scans and behavioral information

such as ADOS from ASD subjects and controls from multiple international sites. However,

to avoid heterogeneity across sites due to differences such as different rs-fMRI scanners and

imaging protocols, we limit our analysis to a single site. Our data consist of 87 subjects,

with 57 ASD and 30 typically-developing control (TDC) subjects.

We preprocess all rs-fMRI scans using the Functional Connectomes-1000 scripts. The

preprocessing steps include skull stripping, motion correction, registration, segmentation,

and spatial smoothing. Then, we obtain the BOLD signals corresponding to 264 regions

based on Power’s regions of interest [102], and construct the FCGs. Flattening the strictly

upper triangular part of the corresponding 264×264 correlation matrix results in a 34, 716-

dimensional vector of correlation features for each subject. We also compute topological

features from each subject’s FCG in the form of 0- and 1-dimensional persistence diagrams

using the procedure described in Section 3.2.2.

3.5.2.2 kPLS regression. We use kPLS regression to relate the ADOS scores with

correlation features, topological features or a combination of both. For regression with

correlation features, we use a linear kernel Kcor defined as the Euclidean dot product

between correlation vectors. For regression with topological features, we use scale space

kernels KTDA0 and KTDA1 for 0- and 1-dimensional persistence diagrams, as defined in

Section 3.3.2. The kernels are normalized by the median of the absolute values of their

entries. To combine topological and correlation features, we use a linear combination of the

kernels to form

KTDA+cor = w0K
TDA0 + w1K

TDA1 + (1− w0 − w1)K
cor.

The kPLS regression with this kernel has four free parameters: the bandwidth parameters

σ0 and σ1 for the scale space kernels, and the weights w0, w1 in the linear combination.

We train all prediction models using leave-one-out cross-validation (LOOCV), i.e., for

each subject, we train the model on the other n−1 subjects and predict the left-out subject’s

ADOS score. We evaluate the accuracy of each model using the root mean squared error
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(RMSE) between predicted and true ADOS scores. The free parameters are tuned by grid

search, with weights w0 and w1 uniformly spaced in the range [0, 1] with a step size of 0.05,

and the bandwidths on a log scale (log10(σ0) and log10(σ1)) in the range [−8, 6] with a step

size of 0.2. Setting (1−w0−w1) = 0 results in a model using only the topological features.

3.5.3 Results

In addition to the kPLS models using Kcor, KTDA+cor, and KTDA, we also consider

a simple model (ADOSmean) that uses the mean ADOS value of n − 1 subjects as the

prediction for the remaining subject. Both the correlation features and the topological

features show promising predictive power over this mean predictor (see Table 3.5). We

also generate n random correlation matrices from independent and identically distributed

(N(0, 1)) time series of the same size as the real fMRI data and compute their linear kernel.

The regression model with random signals has a root mean squared error of 6.47359, which

is worse than the RMSE of the ADOSmean predictor. This test also ensures that using

correlation and topological features is better than using random signals. To determine the

statistical significance of our results, we perform permutation tests using RMSEmethod2 -

RMSEmethod1 as the test statistic. We compare RMSEs of all pairs of models, including

the kPLS models with three kernels and the ADOSmean model. Each test includes 100, 000

permutations, where we randomly swap the method1 and method2 predictions for subjects

and compute the new RMSEs and the test statistic. The p-value is the percentage of

permuted RMSE differences that were greater than the unpermuted difference in the RMSE.

From our results, both KTDA (parameters: σ0 = −6.6, σ1 = 1.8, w0 = 0.05, w1 = 0.95)

and Kcor show evidence of improvement over the baseline. KTDA+cor, which combines the

correlation features with the topological features, has the best predictive power. It is also

TABLE. 3.5. ADOS prediction results. Columns 2–4 are p-values for the permutation test
of improvement of row method over column method.

RMSE ADOSmean KTDA Kcor

ADOSmean 6.4302 - - -

KTDA 6.3553 0.316 - -

Kcor 6.0371 0.055 0.095 -

KTDA+cor 6.0156 0.048 0.075 0.288
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the only method that is statistically significantly better than baseline. The best prediction

result is obtained with parameters σ0 = −7.8, σ1 = 2.8, w0 = 0.10, w1 = 0.40. These results

show that topological features derived from correlations of rs-fMRI have the potential to

explain the connection between functional brain networks and autism severity.

3.6 Classification with Functional Networks

In this section, we explore the utility of topological features in the classification of ASD

versus TDC subjects. We experiment with three representations of topological features

described in Section 3.2.2, namely, persistence diagrams (PD), persistence landscapes (PL),

and persistence images (PI). We train several types of classifiers using these representations

and compare their performance using a paired permutation test.

3.6.1 Contributions

We train three types of ASD classifiers – random forests (RF), support vector machines

(SVM), and neural networks (NN) – using the various representations of topological fea-

tures. We train SVM classifiers using the four kernels for persistence diagrams described

in Section 3.3.2. The neural network classifiers utilize the projection layer for the persis-

tence diagrams described in Section 3.3.4. We also propose hybrid classifiers augmenting

topological features with functional correlations, which typically outperform the classifiers

that use functional correlations or topological features alone. However, our experiments

also show that the improvement in the classification accuracy due to topological features is

not always statistically significant. Therefore, we offer a cautionary tale to the practitioners

regarding the limited discriminative power of topological features derived from fMRI data

for the classification of autism.

3.6.1.1 My contributions. This is a collaborative work. My main contributions

include experiment design, i.e., selecting the topological features and their representations,

deciding the training and testing procedures, and determining the testing procedure to

evaluate the statistical significance of the results. In addition, I also selected various explicit

(persistence landscapes, persistence images) or implicit (kernels) vector representations

of topological features and prototyped the SVM classifiers that use these representations

exclusively or in combination with correlation features.
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3.6.2 Methods

We use Craddock 200 (CC200) and Craddock 400 (CC400) datasets from ABIDE

Preprocessed [20, 39], which include rs-fMRI scans from 16 imaging sites. The scans are

preprocessed using the Configurable Pipeline for Analysis of Connectomes (without global

signal regression) before extracting BOLD signals for n = 200 and n = 400 ROIs, for

CC200 and CC400 ROIs, respectively. After filtering out subjects with missing or invalid

data, the datasets contain 1035 subjects, of which 505 are ASD patients and 530 are TDC.

For each subject, we construct the FCG and compute the 0- and 1-dimensional persistence

diagrams, denoted PD0 and PD1, respectively.

3.6.2.1 Classification with correlation features. Similar to Section 3.5.2, we

obtain correlation feature vectors by flattening the strictly upper triangular parts of the

correlation matrices associated with FCGs. We train SVM classifiers with correlation

features (SVMCorr), using a linear kernel (Euclidean dot product). The cost parameter

that controls the trade-off between misclassification and margin size is estimated via a grid

search. To train RF classifiers with correlation features (RFCorr), we use m trees and a

maximum depth of k, where m and k are parameters estimated via a grid search.

3.6.2.2 Classification with topological features. Persistence images and persis-

tence landscapes are easily vectorized, and we can use them to train classification models

in a straightforward way. We use 200× 200 persistence images with 0 spread. We compute

persistence landscapes of order 1 through 5 sampled at 2000 discrete points. For persistence

diagrams, we use the kernels defined in Section 3.3.2 for SVM models. In the case of the

scale-space kernel, we consider only 0- and 1-dimensional topological features and compute

0- and 1-dimensional kernels separately, which we then combine using a weighted average.

For the persistence-weighted Gaussian kernel, we use a default weight function that assigns

unit weight to each point in the persistence diagram. For the sliced Wasserstein kernel, the

number of directions is fixed to M = 10. The tuneable parameters such as bandwidths are

determined using a grid search for all kernels.

3.6.2.3 Classification with combined features. Lastly, we propose hybrid clas-

sifiers that combine correlation and topological features. In the case of SVM classifiers,

we follow the procedure proposed in Section 3.5.2, combining features through a linear

combination respective kernels. For instance, in the case of persistence diagrams, the
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combined kernel is given by

KPD+Corr = w0KPD0 + w1KPD1 + (1− w0 − w1)KCorr,

where w0, w1 ≥ 0, and w0 + w1 ≤ 1 are parameters estimated using grid search, and

KPD0 and KPD1 are kernels on PD0 and PD1, respectively. KCorr denotes the kernel for

correlation features. For all vector representations, such as correlation features, persistence

images, and persistence landscapes, we use the Euclidean dot product as the kernel.

3.6.2.4 NN models. In addition to the RF and SVM models, we also train NN

models with three, five, and seven fully connected layers. For NN classifiers using persistence

diagrams, the input layer is replaced by the projection layer described in Section 3.3.4. We

also train hybrid NN models where correlation and topological features are processed in

parallel branches before concatenating outputs in the last layer to form a single vector.

3.6.2.5 Permutation tests. We use paired permutation tests to determine the

statistical significance of the improvement in classification accuracy of one classifier over

another. For a pair of models, say model1 and model2, we use the difference in their average

prediction accuracy (Avg. accuracymodel1 −Avg. accuracymodel2) as the test statistic. Due

to the large sample size, it is not feasible to compute all possible permutations. Instead,

we perform 100, 000 permutations to approximate the p-values. In each permutation, we

randomly swap the labels predicted by model1 and model2 for the subjects and compute

the new test statistic. The p-value is the fraction of samples where the permuted labels’

test statistic is greater than the test statistic for the original labels.

3.6.3 Results

We train three types of classifiers, each using correlation features, topological features,

or their combination, to classify Asd and TDC subjects from the CC200 and CC400

datasets. The performance of the classifiers is summarized in Table 3.6 and Table 3.7,

respectively. We employ a five-fold stratified cross-validation scheme to train the classifiers

and report the mean classification accuracy over all folds. Following abbreviations are used

to indicate the types of features used to train a classifier: Corr for correlation features and

PD, PI, and PL for persistence diagrams, persistence images, and persistence landscapes,

respectively. NN5PD+Corr denotes a five-layer hybrid neural network model, combining

correlation with topological features from PD. For SVM models with PDs, we report the
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TABLE. 3.6. Mean classification accuracy using various classifiers and feature combinations
for the CC200 data.

Model Accuracy Model Accuracy Model Accuracy

SVMCorr 65.41
RFCorr 64.81
NN3Corr 68.35
NN5Corr 68.46
NN7Corr 67.1

SVMPD 53.03 SVMPI 54.54 SVMPL 53.03
RFPD – RFPI 52.25 RFPL 52.51
NN3PD 56.06 NN3PI 58.56 NN3PL 55.36
NN5PD 56.15 NN5PI 59.09 NN5PL 55.18
NN7PD 55.48 NN7PI 56.75 NN3PL 54.85

SVMPD+Corr 65.86 SVMPI+Corr 64.25 SVMPL+Corr 65.65
NN3PD+Corr 69.19 NN3PI+Corr 67.2 NN3PL+Corr 68.5
NN5PD+Corr 68.2 NN5PI+Corr 66.87 NN5PL+Corr 67.45
NN7PD+Corr 64.47 NN7PI+Corr 65.1 NN7PL+Corr 67.02

TABLE. 3.7. Mean classification accuracy using various classifiers and feature combinations
for the CC400 data.

Model Accuracy Model Accuracy Model Accuracy

SVMCorr 66.33
RFCorr 63.92
NN3Corr 63.92
NN5Corr 65.58
NN7Corr 62.06

SVMPD 53.69 SVMPI 53.76 SVMPL 53.69
RFPD – RFPI 53.04 RFPL 53.12
NN3PD 55.9 NN3PI 56.1 NN3PL 54.24
NN5PD 56.04 NN5PI 57.39 NN5PL 55.72
NN7PD 54.33 NN7PI 55.58 NN3PL 53.67

SVMPD+Corr 63.36 SVMPI+Corr 62.68 SVMPL+Corr 64.12
NN3PD+Corr 67.84 NN3PI+Corr 67.02 NN3PL+Corr 66.76
NN5PD+Corr 66.03 NN5PI+Corr 66.23 NN5PL+Corr 66.48
NN7PD+Corr 61.25 NN7PI+Corr 64.16 NN7PL+Corr 65.26
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results using only the scale-space kernel in Table 3.6 and Table 3.7. We observe that the

three representations of topological features (PD, PI, and PL) lead to similar performance

(Table 3.6 and Table 3.7), and the same is true for the performance of the kernel SVMmodels

using different kernels (Table 3.8). The highest mean classification accuracy is obtained

using the three-layer hybrid NN models (Table 3.6 and Table 3.7, bold and red entries).

However, we note that adding more layers leads to a decrease in classification accuracy,

and include only three-layer NN classifiers in the permutation tests. Table 3.9 reports the

p-values for the permutation tests comparing row methods with column methods.

TABLE. 3.8. Mean accuracy for kernel SVM with different kernels for persistence diagrams.

PD Kernel CC200 CC400

KS 53.03 53.69

KS+Corr 65.86 63.36

KG 52.51 53.12

KG+Corr 62.98 61.41

KW 55.36 64.24

KW+Corr 64.73 64.12

KF 55.18 55.72

KF+Corr 61.48 60.25

TABLE. 3.9. The statistical significance of improvements in classification accuracy for
CC200, captured by p-values, comparing each row method against each column method.

RFCorr SVMCorr SVMPD+Corr NN3Corr

SVMCorr 0.1502

SVMPD+Corr 0.1943 0.4213

NN3Corr 0.0461 0.048 0.0631

NN3PD+Corr 0.0406 0.0446 0.0414 0.1894

RFCorr SVMCorr SVMPI+Corr NN3Corr

SVMPI+Corr 0.1943 0.4213

NN3Corr 0.0420

NN3PI+Corr 0.0493 0.0763 0.0734 0.7432

RFCorr SVMCorr SVMPL+Corr NN3Corr

SVMPL+Corr 0.1623 0.3513

NN3Corr 0.0581

NN3PL+Corr 0.0467 0.0683 0.0717 0.3524
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The p-values in Table 3.9 indicate that the improvement in classification accuracy for NN

classifiers (hybrid and those using only correlation features) over SVM and RF classifiers is

statistically significant (Table 3.9). However, the test comparing the hybrid NN classifier

against NN classifier using only correlation features indicates that the improvement due to

topological features may not be statistically significant (Table 3.9).

3.7 Discussion

In this chapter, we describe applications of TDA to study structural and functional brain

networks in autism spectrum disorders. Specifically, we use persistent homology to extract

topological features from these brain networks and use these features to perform tasks like

statistical inference, regression, and classification. In a related study [9] not covered in this

dissertation, we also show that topological features are robust to variations in preprocessing

strategies. Our results show that we may use topological features to identify differences in

structural and functional connectivity caused by autism and to predict phenotypes and

cognitive scores.

3.7.1 Structural Brain Abnormalities in ASD

Similar covariance of gray matter density across a population of individuals is thought

to be mediated by shared genetic or developmental factors. The structural covariance maps,

proposed by Zielinski et al. [133], exhibit differences in architecture, with extensive regions of

the frontal lobe showing greater alignment with salience (SN) and executive control network

(ECN) rather than with the default mode network (DMN) [134]. The analysis presented in

Section 3.4 helps summarize these relationships using a more robust topological data anal-

ysis model. Our experiments provide evidence of statistically significant differences in the

0-dimensional topological features of SCGs derived from SN (SN-SCGs). We find decreased

integration of salience and executive networks, with increased integration of default regions

within the frontal lobe. These findings align with results investigating functionally defined

intrinsic connectivity networks [1] and suggest that shared developmental influences may

underlie the particular specificity of SN connectivity abnormalities in autism [125].

The DMN has also been associated with atypical connectivity in autism [8, 11, 28,

81]). However, our experiments fail to capture any statistically significant differences in the
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topology of SCGs derived from DMN. A possible reason is the existence of more complex

topological differences that are not captured by pairwise relationships between the ROIs of

DMN-SCG. The β0 curves encode only 0-dimensional topological features that correspond

to the evolution of the number of connected components. Analyzing three-way or four-way

interactions between ROIs, capturing higher order topological features such as tunnels and

voids, and focusing on specific nodes and edges directly involved in merging components in

the graph filtration may provide further insights into the differences in DMN architecture.

3.7.2 ASD Classification and Prediction of Behavioral Phenotypes

In Section 3.5 and Section 3.6, we explore the utility of topological features in the

prediction of behavioral phenotypes and autism classification, respectively. In both cases, we

observe that combining topological and correlation features leads to improved performance.

In the case of classification, a simple three-layer hybrid neural network classifier achieves

an average accuracy of 69.2%, which is close to the state of the art (70%) on the entire

ABIDE dataset. However, this result, combined with the ones reported by several other

researchers [2, 59, 94], leads us to conjecture that 70% might be the best classification accu-

racy any classifiers can achieve on the entire ABIDE dataset. Several possible factors may

lead to this relatively low performance. One reason is the heterogeneity of the data across

sites. Another reason is the relatively poor single-subject reliability due to low temporal

resolution and short acquisition sequences (≤ 10 min/subject) of the rs-fMRI scans. The

wide developmental age range of the subjects also contributes to the challenge, and the

classifiers may perform better on samples with a narrower age range. Finally, heterogeneity

of the autism spectrum disorders themselves may also result in low classification accuracy.

Grouping subjects with a wide range of symptoms under a single label may not be as

effective as discriminating between several subsets.

3.7.3 Future Work

The work presented in this chapter is only a small set of possible applications of TDA

in neuroscience. Here, we describe two new directions for future research.

3.7.3.1 Dynamic functional connectivity. The functional connectivity graphs

considered in this chapter represent the functional relationship between brain regions.

Alternatively, we can construct brain networks where vertices are the time points in rs-fMRI,
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and the edges represent the similarity between image volumes at two different time points.

These networks reflect dynamical aspects of connectivity, such as the duration and frequency

of brain microstates. Although less intuitive than traditional functional connectivity, such

networks may offer new insights into aspects of cognition and neuropathology. In [9],

we presented preliminary results relating these time-domain networks with cognitive and

personality features such as fluid intelligence. We are interested in further studying such

networks to understand the temporal dynamics of brain function.

3.7.3.2 Structural and functional connectivity at finer scales. The structural

and functional networks considered in this chapter are abstract networks inferred from

clinical or rs-fMRI imaging data. Researchers have now begun applying TDA to study brain

connectivity at a much finer scale, such as neural circuits and synaptic activity with [104]

or without [52] external stimuli. In both cases, recent work has shown that the synaptic

activity networks exhibit higher order functional connectivity (e.g., cliques/simplices) and

topological features (e.g., cavities) [104, 52]. Categorizing different types of neurons [63] and

understanding the differences in synaptic connectivity arising from morphological diversity

within neuronal types [95] is an emerging area of research. TDA techniques described in

this chapter as well as the ideas presented in Chapter 2 may be applicable in such settings.

3.7.4 Conclusion

In this chapter, we describe applications of TDA to study brain networks in autism. We

demonstrate that TDA techniques are well suited to characterize and summarize complex

patterns in brain connectivity. Using topological features of brain networks, we are able to

identify differences in structural and functional connectivity in ASD vs TDC subjects, and

predict phenotypes and cognitive scores. The same techniques can be applied to study the

mechanisms underlying other complex brain disorders such as dementia, Huntington’s, or

Alzheimer’s. We may further apply these techniques to track the progression of the disorder

and the effectiveness of treatments.

TDA techniques can be used to advance our understanding of the organizational prin-

ciples underlying brain networks. For example, recent literature has provided evidence of

higher order structural and functional connectivity between neurons [104, 52, 95]. The

activation of a single neuron depends on its interaction with multiple neurons. Such type
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of higher order connectivity between neurons can be modeled as a simplicial complex. We

may apply the learning algorithms or the notions of random walks on simplicial complexes

presented in Chapter 2 to identify different types of neurons and study their communication

patterns.

Our work represents a small set of possible applications of TDA in neuroscience. The

interest in topological analysis of structural and functional brain networks is growing. In

recent years, TDA techniques such as persistent homology and mapper [115] have been

applied to study brain networks [99, 116, 111] in several different settings. TDA techniques

have the potential to transform the way we study neurons and neural communications, and

we hope to continue exploring their applications in neuroscience in the future.



CHAPTER 4

STRUCTURAL VARIABILITY IN 
GRAPH ENSEMBLES

In this chapter, we study an ensemble of graphs obtained from graph reduction algo-

rithms. Our goal is to quantify the structural variability associated with the vertices and 

the edges of the reduced graphs.

In Section 4.1, we describe the motivation behind the work presented in the chapter. 

In Section 4.2, we give a brief description of relevant concepts such as similarity measures 

for clusterings. In Section 4.3 and Section 4.3, we present methods to capture the structural 

variability associated with the supervertices and superedges of a reduced graph from the 

ensemble. Lastly, in Section 4.5, we discuss the advantages and disadvantages of the 

proposed methods and conclude with a discussion of future directions.

4.1 Introduction

Consider a graph G with n nodes. We can use several graph reduction algorithms to 

reduce G to a smaller graph H with k nodes where k ≪ n. Different algorithms result in 

slightly different reduced graphs. Some graph reduction algorithms employ randomization 

to improve efficiency, producing a different reduced graph in each run with a fixed input 

graph. Given a collection of reduced graphs obtained from G using multiple algorithms 

or multiple runs of the same (randomized) algorithm, we measure the variability of the 

supervertices and the superedges of a reduced graph.

4.1.1 Graph Reduction and Structural Variability

The large sizes of real-world graphs can often hamper the efficiency of their analysis 

and visual interpretability. The idea of graph reduction is to reduce the size of a graph 

while preserving its properties of interest. The two main types of graph reduction are graph 

sparsification and graph coarsening.  Graph sparsification reduces the number of edges in a
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graph while maintaining the number of vertices. Its theoretical approximation bounds are

well studied in the literature (e.g., [130]; also see Chapter 2). Therefore, graph sparsification

is more commonly used in the analysis compared to coarsening.

Graph coarsening, on the other hand, reduces the number of vertices, thus implicitly

reducing the number of edges. Coarsening is typically performed by clustering the vertices of

a graph to form supervertices. The idea of coarsening has its roots in finite element analysis,

but many existing coarsening techniques are heuristic in nature and lack a firm theoretical

footing compared to sparsification. Nevertheless, they appear in many applications such as

visualization [58], graph partitioning [110], and dimensionality reduction [27].

Many graph reduction algorithms focus on preserving the spectrum of the adjacency or

the Laplacian matrix [62] since its spectrum captures many important combinatorial prop-

erties of a graph [31]. Although graph reduction techniques are often used in analysis and

visualization, the variability associated with their outputs has remained mostly unexplored.

There are two main sources of variability in graph reduction:

• Some graph reduction algorithms employ randomization to improve computational

efficiency. As a result, the same algorithm applied to the same input may produce

different outputs across different runs. This type of variability is called residual

variability, which arises from the process itself being inherently unpredictable or

stochastic even with deterministic inputs [65].

• Different graph reduction algorithms focus on preserving slightly different properties

of the original graph and / or have slightly different implementations. As a result,

when applied to the same graph, these algorithms can produce different reduced

graphs. We refer to this type of variability as ensemble variability.

In both cases, we are interested in measuring the variability of the supervertices and the

superedges of the reduced graphs in an ensemble.

4.1.2 Consensus Clustering

Consensus clustering is used to represent the consensus across multiple clusterings from

the same input data, either using multiple clustering algorithms or multiple runs of the same

algorithm [89]. It can be used to determine the number of clusters in the data, study the



84

sensitivity of a clustering algorithm with respect to initial conditions and model parameters,

or assess the stability of the discovered clusters [89]. The consensus approach has been used

to rank and select clustering results in Clustervision [68].

In [47], Fiol-Gonzalez et al. provided a visual exploration tool for ensemble clustering

analysis. Their main contribution was the co-association matrix generated by an ensemble

of clustering results (e.g., from the outputs of multiple classifiers), where a (i, j) entry in the

matrix captures the probability that node i and node j belong to the same cluster. Similarly,

in [48], Gates et al. proposed an element-centric unified framework to compare clusterings.

This framework also compares individual elements based on the relationships induced by

the clusterings. For an ensemble of clusterings, the authors provided a way to compute

the elementwise average agreement and frustration, which is an elementwise measure of

clustering uncertainty in the ensemble. The authors also showed that the traditional cluster-

centric comparison metrics, such as the Adjusted Rand Index, can be computed using this

unified framework by appropriately weighting the cluster-induced relationships.

However, previous work [47, 48] focused on variability associated with the individual

vertices of the input graph. Instead, we are interested in measuring the variability with

respect to the supervertices and superedges of the reduced graph.

4.1.3 Contributions

A graph reduction algorithm reduces the size of a graph while preserving its properties

of interest. However, the structural variability in graph reduction can induce uncertainty in

the insights obtained from the reduced graph. For example, community structures inferred

from a social network using different graph reduction algorithms, or different runs of the

same (randomized) algorithm may be slightly different. Even when the different instances of

reduced networks agree on the global community structure, there may be variations in the

size and connectivity of individual communities. Understanding such variability can help

us gain a deeper understanding of the reduced graph and the original data it is associated

with.

We present a general and flexible framework to quantify and visualize the structural

variability associated with graph reduction algorithms. Our contributions are as follows:

• We present a set of local similarity measures to capture the variability associated
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with the supervertices and superedges of a reduced graph in an ensemble.

• Using the idea of co-clustering, we present a second, more general framework to

capture the structural variability associated with a reduced graph in a given ensemble.

Subsequently, we give an interactive visual demo which provides different ways to encode

the structural variability for a given reduced graph, and allows users to better understand

the structural in multimodel or multirun graph reduction scenarios as detailed in [70].

4.1.3.1 My contribution. This is a collaborative work. My main contributions

include developing various measures that capture the structural variability, which is the

focus of this chapter.

4.2 Background

Let G = (V,E,w) be a simple, weighted, undirected graph with n vertices and m edges,

positive edge weights w : E → R+, with we := w(e) for an edge e ∈ E.

Given a graph G, a coarse graph H = (V ′, E′, w′) is constructed using a clustering that

partitions vertices of G into k partitions. Let S = {s1, s2, . . . , sk} denote the clustering.

Each partition si ⊆ V (1 ≤ i ≤ k) represents a supervertex in H denoted by ci. The

supervertices ci and cj of H are connected via a superedge, whose weight represents an

aggregation of weights of all edges between vertices of G in clusters si and sj . We identify

the clustering S with a coarsening matrix M ∈ Rk×n defined as [62, Section 3.1]:

Mij =

{

1 if vj ∈ si,

0 otherwise.

Let S1 = {s11, s12, · · · , s1k} and S2 = {s21, s22, · · · , s2k} be two clusterings of vertices V in G, 

corresponding to the reduced graphs H1 and H2, respectively. Let M1 and M2 denote 

the corresponding coarsening matrices. The confusion matrix of S1 and S2 is defined as

F = M1(M2)T . Fij = |si1 ∩ sj2| captures the size of overlap between partitions si1 ∈ S1 and 

sj
2 ∈ S2.

4.3 Capturing Variability via 
Local Similarity Measures

The global similarity between reduced graphs H1 and H2 can be measured using the 

Jaccard index, adjusted Rand index, or mutual information of the corresponding clusterings
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S1 and S2. However, to quantify the variability associated with individual supervertices of

the reduced graphs, we need a local measure. Each supervertex c1i of H1 corresponds to a

cluster s1i in S1. We can define a local similarity measure for each individual cluster s1i in

S1, with respect to clustering S2 as the contribution of s1i to the global similarity of S1 and

S2.

4.3.1 Jaccard Index and Local Jaccard Index

We measures the similarity between H1 and H2 by considering whether a pair of vertices

of the input graph G belongs to the same cluster or different clusters in clusterings S1 and

S2. The Jaccard index is defined as

J(S1,S2) =
n11

n11 + n10 + n01
, (4.1)

where n11 is the number of pairs in the same cluster under S1 and S2, n10 the number

of pairs in the same cluster under S1 but different clusters under S2, and n01 the number

of pairs in different clusters under S1 but the same cluster under S2. Then, we have [85,

Section 2.1, page 3]

n11 =
1

2









k
∑

i=1

k
∑

j=1

F 2
ij



− n



 . (4.2)

Using the relation between the Mirkin metric and the Rand index, we have [85, Section 2.1

Equation 9]

n01 + n10 =
1

2





k
∑

i=1

|s1i |2 +
k

∑

j=1

|s2j |2 − 2
k

∑

i=1

k
∑

j=1

F 2
ij



 . (4.3)

Adding n11 to both sides, we get

n11 + n01 + n10 =
1

2





k
∑

i=1

|s1i |2 +
k

∑

j=1

|s2j |2 −





k
∑

i=1

k
∑

j=1

F 2
ij



− n



 . (4.4)

Based on J(S1,S2), and using the expressions in Equation 4.2, and Equation 4.4, we

define the local Jaccard index of a cluster s1i in S1 with respect to S2 as

LJ(s1i ,S
2) :=

1
2

((

∑k
j=1 F

2
ij

)

− n
k

)

n11 + n10 + n01
. (4.5)

By definition,
∑k

i=1 LJ(s
1
i ,S

2) = J(S1,S2).
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4.3.2 Adjusted Rand Index and Local Adjusted Rand Index

Another way to measure similarity between H1 and H2 is to compute the adjusted Rand

index of the corresponding clusterings S1 and S2. The adjusted Rand index has an expected

value of 0 for independent clusterings and a value of 1 for identical clusterings [128]. For

S1 and S2, the Rand index is defined as

R(S1,S2) =
n11 + n00

(

n
2

) , (4.6)

where n11 and n00 are as defined earlier. Combined with Equation 4.1, n11+n10+n01+n00 =
(

n
2

)

. The adjusted Rand index is defined as the normalized difference between the Rand index

and its expected value [128, 85]

AR(S1,S2) =
R(S1,S2)− E[R(S1,S2)]

1− E[R(S1,S2)]

=

∑k
i=1

∑k
j=1

(Fij

2

)

− r3
1
2(r1 + r2)− r3

, (4.7)

where r1 =
∑k

i=1

(|s1i |
2

)

, r2 =
∑k

j=1

(|s2j |

2

)

, r3 =
r1r2
(n2)

, and Fij = |s11 ∩ s2j |.

Based on AR(S1,S2), we define local Adjusted Rand index of a cluster s1i in S1 with

respect to S2 as

LAR(s1i ,S
2) =

∑k
j=1

(Fij

2

)

− r′3
1
2(r1 + r2)− r3

, (4.8)

where r1, r2, r3 are the same as in Equation 4.7, and r′3 =
(|s1i |

2

)

r2/
(

n
2

)

. By definition, we

have
∑k

i=1 LAR(s1i ,S
2) = AR(S1,S2).

4.3.3 Mutual Information and Local Mutual Information

Mutual information measures the mutual dependence between random variables. Similar

to the Jaccard index and adjusted Rand index, we can use the mutual information of S1

and S2 to measure the similarity between reduced graphs H1 and H2. Given a clustering

S, under uniform distribution, the probability of any vertex v being in a cluster si is

Pr(v ∈ si) = Pi =
|si|
n . Given a pair of clusterings S1 and S2, the joint distribution of the

probability of a vertex being in cluster s1i ∈ S1 and s2j ∈ S2 is

Pr(v ∈ s1i and v ∈ s2j ) = Pij =
|s1i ∩ s2j |

n
=

Fij

n
. (4.9)
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The mutual information MI(S1,S2) of S1, and S2 is defined [85] as

MI(S1,S2) =
k

∑

i=1

k
∑

j=1

Pij log
Pij

PiPj
.

Based on MI(S1,S2), we define local mutual information of a cluster s1i in S1 with

respect to S2 as

LMI(s1i ,S
2) =

k
∑

j=1

Pij log
Pij

PiPj
(4.10)

4.3.4 Vertex Variability for Reduced Graphs

Consider an ensemble H = {H1, H2, . . . , H l} of l reduced graphs, obtained from input

graph G. These reduced graphs may be the result of multiple runs of a randomized graph

reduction algorithm or the results of multiple graph reduction algorithms. We identify each

reduced graph in the ensemble with a clustering of the vertices of the input graph G. Let

S = {S1,S2, . . . ,Sl} denote the ensemble of the clusterings corresponding to the reduced

graphs in H. Also associated with each clustering St ∈ S is a coarsening matrix M t.

The structural variability of the supervertices of a reduced graph is the same as variability

associated with the individual clusters of the associated clustering.

Without loss of generality, suppose we want to capture the variability associated with

the supervertices of the reduced graph H1 (with corresponding clustering S1). For each

cluster s1i in S1, we compute its local similarity with each of the remaining clusterings

{S2, . . . ,Sl} ∈ S. Formally, let αt
i denote the local similarity of s1i ∈ S1 with St ∈ S for

t = 2, . . . , l, i.e., αt
i is equal to LJ(s1i ,S

t), LAR(s1i ,S
t), or LMI(s1i ,S

t).

IfH1 has k supervertices, we can arrange their local similarities with respect to {S2, . . . ,Sl}

in form of a k × l matrix. For example, if we measure local similarities with local Jaccard

index, we can define Q1
LJ where Q1

LJ(i, t) = LJ(s1i ,S
t). Similarly, we can define matrices

Q1
LAR and Q1

LMI using the local adjusted Rand index and local mutual information mea-

sures. We conjecture that the variability associated with a supervertex c1i of H
1 is described

by the standard deviation of the distribution of αt
i for t = 2, . . . , l, which is given by the ith

row of Q1
LJ (or Q1

LAR or Q1
LMI).
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4.3.5 Edge Variability in Graph Sparsification

Consider an ensemble H = {H1, H2, . . . , H l} of l sparsified graphs obtained from the

same input graph G(V,E,w). Graph sparsification algorithms reduce the size of the graph

by deleting and reweighting its edges, while the vertices are unaffected. Therefore, all

sparsified graphs in the ensemble have the same vertex set V . Let wt(i, j) denote the

weight of the edge between vertices vi and vj in Ht. The empirical variability of an edge

between vi, vj ∈ V can be captured by the mean and the standard deviation of the edge

weights wt(i, j) for 1 ≤ t ≤ l. For some sparsification algorithms, we may be able to

compute the edge variability analytically. Here, we give the analytical expressions for the

expected edge weight and its standard deviation for graph sparsification based on effective

resistances.

Given a graph G, the edge sampling process of Algorithm 3 in Chapter 2 can be viewed as

a sequence of independent Bernoulli trials. For an edge e ∈ E, with a sampling probability

pe, a Bernoulli trial is a success if e is sampled; otherwise, it is a failure. Every time the edge

e is sampled, it is added to the sparse graph K with weight we/qpe. After q trials, the final

weight of e in K is Xewe/qpe, where Xe is the number of times e is sampled out of q trials.

Since Xe captures the number of successes in q independent trials, it follows a binomial

distribution with parameters q (i.e., the total number of trials) and pe (i.e., the probability

of success), denoted as B(q, pe). Therefore, E(Xe) = qpe, and Var(Xe) = qpe(1− pe).

Therefore, the expected weight of an edge e in a reduced graph K = (V,E′, w′) is

E(w′
e) = E(Xewe/qpe) = (we/qpe)E(Xe) = we, (4.11)

and its variance is given by

Var(w′
e) = Var(Xewe/qpe) = w2

e/(q
2p2e)Var(Xe)

= w2
e(1− pe)/qpe. (4.12)

The actual distribution of weights across edges inK may be unimodal or bimodal, depending

on the parameter values.

4.3.6 Edge Variability for Graph Reduction

Now, suppose H = {H1, H2, . . . , H l} is an ensemble of l reduced graphs obtained using

graph coarsening. Without loss of generality, suppose we want to capture the variability
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associated with the superedges of the reduced graph H1. To do that, first we need to estab-

lish correspondences between supervertices of H1 and each of the remaining reduced graphs

{H2, . . . , H l} in the ensemble H. Consider reduced graphs H1 and H2 with corresponding

clusterings S1 and S2. The problem of establishing correspondences between vertices of H1

and H2 is the same as the problem of a perfect matching in a complete bipartite graph. It

can be solved in several different ways. We give two examples of matching strategies below.

For simplicity, we assume that H1 and H2 have the same number of supervertices.

Recall that the clusters in S1 and S2 represent the supervertices of H1 and H2, respectively.

Therefore, a matching between the supervertices of H1 and H2, is equivalent to a matching

between the clusters of S1 and S2.

If the clusterings S1 and S2 are computed using spectral embedding (such as in spectral

clustering), we can associate each cluster in S1 and S2 with its centroid in the embedded

space. Then, we can assign correspondences between clusters of S1 and S2 based on the

Euclidean distances between the centroids. Formally, let x1i ∈ Rk be the centroid of cluster

s1i ∈ S1 in the k-dimensional embedding space. Similarly, let x2j ∈ Rk be the centroid of

cluster s2j ∈ S2 in the k-dimensional embedding space. Then, for each cluster s1i ∈ S1, we

find a cluster s2j ∈ S2 that minimizes the Euclidean distance ‖x1i − x2j‖2.

When a spectral embedding is not available, we can assign correspondences based on

the size of the overlap s1i ∩ s2j between clusters s1i ∈ S1 and s2j ∈ S2. In this case, the best

matching is given by a permutation that maximizes the trace of the confusion matrix F

of S1 and S2. We can approximate this maximal matching using a simple greedy strategy.

We begin with two sets, A = S1 = {s11, s12, . . . , s1k} and B = S2 = {s21, s22, . . . , s2k}, each

containing k elements. We find clusters s1i ∈ A and s2j ∈ B, such that their intersection

s1i ∩ s2j is the largest for all 1 ≤ i, j ≤ k, and assign a correspondence between s1i and

s2j . Then, we update sets A and B by removing s1i and s2j , i.e., we set A ← A \ {s1i } and

B ← B \ {s2j} so that both sets now contain k − 1 elements. We repeat these two steps

until each cluster of S2 is matched to a cluster of S1.

Let πt denote the correspondence between supervertices of H1 and Ht for t = 2, . . . , l.

The structural variability associated with an edge (c1i , c
1
j ) in G1 is given by the mean and

standard derivation of the weights associated with corresponding edges {(πt(c1i ), π
t(c1j )) ∈

Ht} for 2 ≤ t ≤ l.
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4.4 Capturing Variability via 
Co-Clustering Probabilities

Here, we propose an alternative method to capture the structural variability associated 

with the vertices and edges of reduced graphs in an ensemble. This method builds on the 

ideas proposed by Fiol-Gonzalez et al. [47] and Gates et al. [48].

Consider a weighted undirected graph G, with vertex set V = {v1, v2, . . . , vn} and 

number of vertices |V | = n. Let H and S denote the ensembles of reduced graphs and 

the corresponding clusterings. For each clustering St ∈ S, we define a cluster-induced 

graph whose n × n adjacency matrix At is defined as

At
jk =

{

1 if vj , vk ∈ sti for some sti ∈ St,

0 otherwise.

At indicates the co-clustering of vertex pairs in the clusters of clustering St. Figure 4.1

illustrates an example. Let A∗ denote the elementwise average of matrices At for t = 1, . . . , l,

i.e., A∗ = 1
l

∑l
t=1A

t. A∗
jk is the empirically estimated co-clustering probability of vertices

vj and vk across all clusterings in the ensemble.

FIGURE. 4.1. Example of a co-clustering graph. On the left is a clustering and on the
right is the corresponding co-clustering graph.
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Now, for any given reduced graphHt, with the corresponding clustering St = {st1, . . . , stk},

and the coarsening matrix M t, we define a matrix Qt

Qt = (M t)TA∗M t.

Qt aggregates the pairwise co-clustering probabilities of vertices and edges of G contained

within the supervertices and superedges of the reduced graph Ht. We can also normalize

Qt to obtain Q̃t as

Q̃t = (Dt)−1/2Qt(Dt)−1/2.

Here, Dt is a k × k diagonal matrix where Dt(i, i) is the size of cluster stk ∈ St.

By construction, if all clusterings in S are identical, then Qt and Q̃t are diagonal matrices

for all St ∈ S. When the clusterings in S are not identical, we conjecture that the closer Q̃t is

to a diagonal matrix, the more “stable” is the clustering St. We can judge the local stability

of the supervertices and superedges of the corresponding reduced graph by examining the

diagonal and the off-diagonal entries of Q̃t.

Consider a cluster sti ∈ St such that every other clustering in the ensemble has a cluster

with exactly the same members as sti. We call such a cluster a stable cluster. Any given pair

of vertices in a stable cluster is clustered together across all clusterings in S, and therefore,

has a co-clustering probability of 1. Therefore, by construction, the diagonal entry Q̃t(i, i)

corresponding to sti is |sti| − 1, where |sti| is the size of the cluster. When a cluster sti is

not stable, we can obtain a measure of its variability by examining the difference between

Q̃t(i, i) and |sti| − 1 (see Section 4.5.2 for an example).

The off-diagonal entries of Q̃t are the aggregated co-clustering probabilities of the pairs

of vertices that are split across different clusters by clustering St, normalized by the cluster

sizes. If sti is a stable cluster, a vertex vp ∈ sti is never co-clustered with a vertex vq ∈ V \ sti
in any clustering of S. Therefore, by construction, Q̃t(i, j) = 0 for all j 6= i, indicating an

isolated supervertex in the reduced graph. When sti is not a stable cluster, the corresponding

off-diagonal entries of Q̃t are nonzero. A large off-diagonal entry Q̃t(i, j) implies that vertex

pairs with high co-clustering probability are split across clusters sti and stj of St instead of

being clustered together. Therefore, large off-diagonal entries indicate greater instability in

the memberships of the corresponding clusters.
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4.5 Discussion

We propose to apply the methods described in Section 4.3 and Section 4.4 to visualize

the variability of supervertices and superedges of a reduced graph from an ensemble. Here,

we discuss potential drawbacks of the local similarity-based variability measures and the

advantages of the co-clustering-based variability.

4.5.1 Drawbacks of Local Similarity-Based Method

We define local similarities as the contributions of individual clusters to the global

similarity, i.e., Q1
LJ(i, t) is the contribution of the cluster s1i ∈ S1 to the global similarity

J(S1,St). We conjecture that the standard deviation of the ith row is an indicator of the

variability of the ith vertex of the reduced graph H1. However, this conjecture may not

hold in some cases.

Consider the ensemble S of clusterings and suppose we want to measure the local

variability for clusters of S1. The local similarity measures for any cluster s1i , as defined in

Section 4.3, are not independent of variations in other clusters in S1 and St. In the case of

Equation 4.5, this dependence comes from n10 and n01 in the denominator. In the case of

Equation 4.8, the dependence comes from r1, r2, r3, and r4.

To illustrate this point, consider the ensemble of four clusterings in Figure 4.2. The

matrix Q
(a)
LJ measures the local similarities of clusters in clustering (a) using the local

Jaccard index.

FIGURE. 4.2. Example of a clustering ensemble.



94

Q
(a)
LJ =











(b) (c) (d)

{1, 2} 0.1042 -0.02084 0.1667

{3, 4} 0.1042 -0.02084 0.1667

{5, 6, 7} 0.1190 0.1190 0.1905











The standard deviations of the rows corresponding to clusters {1, 2}, {3, 4}, and {5, 6, 7} are

0.0779, 0.0779, and 0.0337, respectively. Cluster {1, 2} is a “stable” cluster that appears in

all four clusterings. However, it has a nonzero local variability. Cluster {1, 2} also does not

have the lowest variability among the three clusters of (a). Even though this behavior may

appear counterintuitive, it may not be entirely undesirable. We may want the variability of

a supervertex to take into account the variations in its neighborhood.

To measure the variability of superedges using local similarity measures, we need to find

correspondences between clusters. The variability of superedges depends on how we assign

these correspondences. There are several ways to assign correspondences. In Section 4.3,

we describe two simple strategies. However, in some cases, finding good mappings between

clusters may not be possible. For example, consider the two clusterings given in Figure 4.3.

The confusion matrix for the two clusterings is a matrix of all ones. All possible mappings

between clusters of the two clusterings have the same cost. These clusterings illustrate the

difficulties in finding correspondences.

FIGURE. 4.3. Two clusterings illustrating difficulties in assigning correspondences.
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4.5.2 Advantages of Co-Clustering-Based Method

We believe that the co-clustering-based method to capture structural variability de-

scribed in Section 4.4 can overcome some of the drawbacks of the local similarity-based

methods. For instance, consider again the clusterings given in Figure 4.2. To capture

the variability of the clusters of clustering (a) using the co-clustering based method, we

compute the matrices Q(a) and Q̃(a) as described in Section 4.4.

Q(a) =











{1, 2} {3, 4} {5, 6, 7}

{1, 2} 2.0 0.0 0.0

{3, 4} 0.0 1.0 2.0

{5, 6, 7} 0.0 2.0 2.5











Q̃(a) =











{1, 2} {3, 4} {5, 6, 7}

{1, 2} 1.0 0.0 0.0

{3, 4} 0.0 0.5 0.8165

{5, 6, 7} 0.0 0.8165 0.8334











For cluster {1, 2}, the corresponding diagonal value of Q̃(a) is 1 and the off-diagonal values

are all 0, identifying it as a stable cluster. Cluster {3, 4}, on the other hand, is identified

as an unstable cluster by the low diagonal value of 0.5 and the high off-diagonal value of

0.8165. The high off-diagonal value of 0.8165 in Q̃(a) indicates that a pair of vertices with

high co-clustering probability is split across clusters {3, 4} and {5, 6, 7}. Looking at the

clusterings in Figure 4.2, we see that the pair of vertices is 3 and 7, which is co-clustered in

three of the four clusterings.

4.5.3 Conclusion

The methods presented in this chapter help us understand the structural variability in

an ensemble of reduced graphs. This work has direct applications in visualization. We may

also be able to use the structural variability measures, particularly the co-clustering based

measures, to compare different graph reduction and graph clustering algorithms.

For many graph reduction and graph clustering algorithms, it may be difficult to derive

an analytical measure that quantifies uncertainty. The work presented in this chapter is

the first step toward developing a more general framework for uncertainty quantification

for such algorithms.



CHAPTER 5

CONCLUSION AND A VISION OF

FUTURE RESEARCH

The past few decades have seen an explosion of complex forms of data. The work

presented in this dissertation demonstrates that TDA can be particularly useful in studying

complex forms of data such as trees, graphs, simplicial complexes and hypergraphs. Our

vision is to develop new methodologies for data science with an end-to-end integration of

TDA with modern machine learning pipelines. Figure 5.1 shows how our existing work fits

into a machine learning pipeline.

5.1 Using TDA to Handle Complex Input Data

In Chapter 3 and Chapter 4 of this dissertation, we work with ensembles of graphs

which are becoming increasingly common. However, machine learning models are typically

FIGURE. 5.1. Research vision and our contributions.
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designed for data in vector forms. Therefore, we focus on extracting topological features

with vector representations from graphs.

In Chapter 3, we show how persistent homology, a core TDA technique, can be used

to extract topological features from brain networks and utilize them in various machine

learning applications. Although persistence diagrams are non-Euclidean objects themselves,

we describe ways to linearize them, either explicitly via vector embedding, or implicitly

via kernels. This approach also allows us to combine topological features with traditional

features.

The persistence diagrams considered in Chapter 3 are obtained using a single scale

parameter. Although persistence diagrams for two or more parameters do not exist [22],

researchers have begun exploring the theoretical and algorithmic aspects of multiparameter

persistent homology [22, 74, 75]. For instance, in [36], Corbet et al. define a kernel for

multiparameter persistence, and show that this kernel can be approximated efficiently. This

is an active area of research with potential applications in multivariate data analysis. Apart

from persistence diagrams, topological summaries such as Euler characteristic curves [76,

77, 83] and mapper graphs [93, 80, 30] have also been used in various machine learning

applications.

TDA provides several tools to summarize and characterize complex forms of data. We are

interested in finding new application domains and new ways to utilize different topological

summaries for machine learning. We believe that topological summaries may lead to a

unifying framework that allows modern machine learning pipelines to handle complex data

types such as trees, graphs, simplicial complexes, and hypergraphs.

5.2 TDA to Improve the Learning Process

Objects like simplicial complexes or hypergraphs allow us to model higher order inter-

actions among three or more data points. These interactions are essential in real-world

situations, such as social relationships, coauthorships, or protein interactions. However,

algorithms that can exploit the structural information encoded in these objects have rarely

been explored in the machine learning literature.

In Chapter 2, we present spectral algorithms for simplicial complexes, such as spar-

sification, clustering, and label propagation. We are interested in extending our work
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in the setting of deep learning, for example, to extend graph convolution networks to

simplicial complexes and hypergraphs. Our work in Chapter 2 provides a basis for a unifying

framework of learning algorithms that can leverage the complex relationships between data

points encoded in graphs, simplicial complexes, and hypergraphs.

Researchers have started exploring ways to incorporate topological information into deep

learning process itself. For example, Liu et al. [78] proposed a persistent convolutional neural

network for audio signals to perform tasks such as classification and music tagging, whereas

Clough et al. [33] used topological priors based on desired sequences of Betti numbers for

lung segmentation in cardiac MRI. Bruel-Gabrielsson et al. [16] incorporated topological

constraints based on persistence diagrams in the optimization algorithm to reconstruct

surfaces from point cloud data. Poulenard et al. [101] described how persistence diagrams

can be used in optimization over real-valued functions for shape matching.

Many of these methods were tailored for specific applications. However, the key idea

behind all these methods is similar: to design functions that are differentiable with respect

to topological measurements. For example, Bruel-Gabrielsson et al. [17] proposed a general

framework for incorporating topological information in deep learning in the form of a

differentiable topology layer. The utility and flexibility of this framework is demonstrated

by applying it (a) to regularize the weights of machine learning models, (b) to construct

a loss function for deep generative models that incorporates topological priors, and (c) to

perform adversarial attacks on models trained with persistence features.

The existing methods of incorporating topological information in the learning process

have mostly focused on topological features of individual instances. Instead, Chen et al. [26]

proposed a method of regularization over topological complexity of the classifier itself by

incorporating the importance of topological features such as connected components and

loops. Building on this idea, we are interested in designing topological constraints for the

latent spaces of network layers. Such constraints may be useful, for example, in promoting

latent spaces with specific topological characteristics. This line of research presents many

exciting opportunities as well as theoretical and algorithmic challenges. We will address

these challenges in incorporating topological optimizations into the learning process and

explore applications of such optimizations in new domains.
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5.3 Using TDA to Explain Complex Learning Models

Understanding and explaining model behavior has become crucial with the emergence of

deep learning. In [103], we described a way to utilize topological summaries to understand

the organization of the activation space for trained deep learning models. Topological

summaries can also be useful in characterizing the shape and the structure of the model’s

parameter spaces. We can further extend these techniques to understand how the activation

spaces and the parameter spaces change across layers, and across training epochs, and

utilize this knowledge to guide network design and the learning process. We can use

topological summaries to understand the model’s response to adversarial inputs and improve

the model’s robustness.

5.4 Final Remarks

Our ultimate goal is to bring together the fields of TDA and machine learning. Achieving

this goal will require fundamental research in areas of computational topology, computa-

tional geometry, algorithms, graph theory, and machine learning. By integrating ideas from

TDA with modern machine learning, we hope to provide

• A unified learning framework to handle complex (e.g., non-Euclidean) data types,

• Topology-aware optimizations for machine learning, and

• Valuable methods to understand model behaviors.

The work described in this dissertation represents the initial steps in each of these directions.

By combining TDA with machine learning, our goal is to transform the data science

landscape, with applications beyond medical imaging and neuroscience.
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[16] R. Brüel-Gabrielsson, V. Ganapathi-Subramanian, P. Skraba, and L. J. Guibas,
Topology-aware surface reconstruction for point clouds. Preprint, arXiv:1811.12543
[cs.CG], 2018.
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