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Vision

Goal: Integrating TDA into different stages of ML pipelines.
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Overview of the Talk

1 TDA for Brain Networks.
1 Statistical Inference with β0 curves.
2 Regression with persistence diagrams.
3 Classification with persistence diagrams.

2 Spectral Algorithms for Simplicial Complexes.
1 Spectral sparsification.
2 Learning algorithms (spectral clustering, label propagation).
3 Random walks on Simplicial Complexes.

3 Ongoing Projects.

4 Conclusion.
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Part 1

Machine Learning with Topological Features of Brain Networks
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Motivation: Each data point is a network.

Approach: Extract topological features from brain networks and
use them for machine learning.

Contributions

Statistical inference for structural brain networks.

Predicting behavioral measures with functional brain
networks.

Classifying functional brain networks.
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Topological Features
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Structural Brain Networks

Encode shared structural influences across a group of subjects.
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Functional Brain Networks

Encode level of synchronicity across time (for a single subject).
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Graph Filtration

β0: # Connected Components.
β0 Curve: Changes in connectivity across a sequence of thresholds.

Figure: Graph filtration to compute β0 curve.
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Persistent Homology

Tracks changes in topology across multiple scales.

Figure: (a, b) Persistent homology computation, (c) Persistence
barcode, and (d) Persistence diagram.
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Persistent Homology: Representations

Transform persistence diagrams to vectorizable representations.
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Statistical Inference with Structural Networks

Permutation, Bootstrap tests.

Test statistic: Largest gap between β0 curves.

Main Result: Evidence of abnormalities in gray matter regions
associated with Salience Network (SN). [BrainCon2019]
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Statistical Inference with Structural Networks

Difference between ASD and TDC at max-gap threshold for SN.
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Relating Functional Networks to Behavioral Measures

Method: Kernel Partial Least Squares Regression (KPLS).

Main result: The model augmenting correlations with topological
features has the best predictive power and it is the only model that
shows statistically significant improvement over other models.
[ISBI2016]
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Methods

Correlation features: Linear kernel (K cor).

Persistence Diagrams: Scale-space kernel Reininghaus,
Huber, Bauer, and Kwitt 2015 (KTDA).

Combined kernels (KTDA+cor):

KTDA+cor = w0K
TDA0 + w1K

TDA1 + (1− w0 − w1)K cor.

Best result with w0 = 0.10, w1 = 0.40.
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Autism Classification with Functional Networks

Sourabh Palande TDA + ML 16 / 48



Autism Classification with Functional Networks

Projection layer: Hofer et al.1

1Hofer, Kwitt, Niethammer, and Uhl 2017.
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Results

Main Results:

Hybrid models typically outperform.

Best accuracy: 69.19% (3-layer hybrid NN).

Improvement is not always statistically significant.
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Part 2

Spectral Algorithms for Simplicial Complexes
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Motivation: Data modeled as a simplicial complex

Approach: Leverage topological structures encoded by higher
order interactions in machine learning algorithms.

Contributions

Label propagation and spectral clustering algorithms for
simplicial complexes.

Spectral sparsification algorithm for simplicial complexes.

Some perspectives on random walks on simplicial complexes.
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Graphs

Spectral Clustering

Label Propagation
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Dual Graph

Dual graph at dimension 1.

Edges in SC become vertices in dual graph.
If edges in SC share a triangle, vertices in dual graph are connected.
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Simplicial Complexes

Spectral Clustering

Label Propagation
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Sparsification: Preserving Spectral Properties

Graphs:

(1− ε)LG � LH � (1 + ε)LG .

Simplicial Complexes:

(1− ε)LK � LJ � (1 + ε)LK .

(1− ε)xTLKx ≤ xTLJx ≤ (1 + ε)xTLKx .
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Simplicial Complex: Definitions, Notation

Oriented simplicial complex K : Every simplex is oriented.

nk : Number of k-simplices.

Sk : set of all k-simplices in K . wf : weight of simplex f ∈ K .

Wk : diagonal matrix, Wk(f , f ) = wf where f ∈ Sk .

V = {1, 2, 3, 4}, E = {12, 23, 34, 14, 24}, T = {124, 234}.
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Simplicial Complex: Incidence, up-Adjacency

Dk : Incidence matrix (Rnk+1 × Rnk ).

Dk(i , j) =



0 if σkj is not on the boundary of σk+1
i ,

1 if orientation of σkj agrees with the

orientation induced by σk+1
i ,

−1 if orientation of σkj does not agree with the

orientation induced by σk+1
i .

Aup
k : up-Adjacency matrix (Rnk × Rnk ).

Aup
k (i , j) =



−wf σi and σj are both faces of the same (k + 1)-simplex f ∈ Sk+1(K )

and both agree or disagree with the orientation of f ,

wf σi and σj are both faces of the same (k + 1)-simplex f ∈ Sk+1(K )

and either σi or σj (but not both) agree with the orientation of f ,

0 if σi and σj are not faces of the same (k + 1)-simplex f

for any f ∈ Sk+1(K ) .
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Simplicial Complex: up-Laplacian

deg(σi ): Degree of a k-simplex σi :

deg(σi ) =
∑

f ∈Sk+1
σi⊂f

wf .

∆k : Degree matrix (Rnk × Rnk ), ∆k(i , i) = deg(σi ).

The k-dimensional up-Laplacian is:

Lupk = W−1
k

(
DT
k Wk+1Dk

)
,

= W−1
k

(
∆k − Aup

k

)
.
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Running Example

∆1 =



(12) (23) (34) (14) (24)

(12) 1
(23) 1
(34) 1
(14) 1
(24) 2



D1 =

( (12) (23) (34) (14) (24)

(124) 1 0 0 −1 1
(234) 0 1 1 0 −1

)

Aup
1 =



(12) (23) (34) (14) (24)

(12) 0 0 0 1 −1
(23) 0 0 −1 0 1
(34) 0 −1 0 0 1
(14) 1 0 0 0 1
(24) −1 1 1 1 0



Lup1 =



(12) (23) (34) (14) (24)

(12) 1 0 0 −1 1
(23) 0 1 1 0 −1
(34) 0 1 1 0 −1
(14) −1 0 0 1 −1
(24) 1 −1 −1 −1 2



Sourabh Palande TDA + ML 28 / 48



Generalized Effective Resistances

(Lupk−1)+: Moore-Penrose pseudoinverse.

Rk = Dk−1(Lupk−1)+DT
k−1

= Dk−1

(
W−1

k−1D
T
k−1WkDk−1

)+
DT
k−1.

Generalized effective resistance of k-simplex f = Rk(f , f ).

In case of graphs: Effective resistance is the voltage drop
between vertices for a unit current.
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Simplicial Complex: Sparsification Algorithm

Algorithm 1: J = Sparsify(K , k , q)

Data: A weighted, oriented simplicial complex K , dimension k
(where 1 ≤ k ≤ dimK ), and an integer q.

Result: A weighted, oriented simplicial complex J which is
sparsified at dimension k , with equivalent
(k − 1)-skeleton to K and dim J = k .

J := K (k−1)

Sample q k-dimensional simplices independently with
replacement according to the probability

pf =
w(f )Rk(f , f )∑
f w(f )Rk(f , f )

,

and add sampled simplices to J with weight w(f )/qpf . If a
simplex is chosen more than once, the weights are summed.
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Graph: Spectral Clustering (NJW)

Algorithm 2: y = Cluster(G , d)a

Data: G (V ,E ,W ): A weighted, undirected graph with
|V | = n, d : the number of clusters

Result: y: A vector of cluster assignments l ∈ {1, 2, . . . , d} for
the vertices of G .

Construct matrix A, A(i , j): weight of edge ei ,j .

Compute diagonal matrix D, D(j , j) =
∑

i A(i , j).

Compute M = D−1/2AD−1/2.

Construct matrix X = [u1u2 · · · ud ] ∈ Rn×d where ui ’s are the
eigenvectors corresponding to the d largest eigenvalues of M
(chosen to be orthogonal to each other in the case of repeated
eigenvalues).

Yij = Xij/
(∑

j X
2
ij

)1/2
(normalize rows of X to unit length).

y = kMeans(Y , d).

Return y as cluster assignments for vertices of G .

aNg, Jordan, and Weiss 2001.
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Graph: Label Propagation (ZG)

Algorithm 3: y = PropagateLabels(G , yl)
a Data: G (V ,E ,W ): A weighted, undirected graph with

|V | = n, yl: A vector containing labels ∈ {+1,−1} of
first l vertices.

Result: y: A vector of label assignments l ∈ {+1,−1} for all
the vertices of G .

Construct matrix A, A(i , j): weight of edge ei ,j .

Compute diagonal matrix D, D(j , j) =
∑

i A(i , j).

P = AD−1.

Initialize y(0) = (yl , 0), t = 0.

Repeat until convergence:

y(t+1) = Py(t),

y
(t+1)
l = y

(t)
l .

Return sgn(y(t)) as label assignments for vertices of G .

aZhu and Ghahramani 2002.
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Learning Algorithms for Simplicial Complex

We perform learning on the dual graph at dimension k .

Adual
k (i , j) =


wf σi and σj are both faces

of the same (k + 1)-simplex f ∈ Sk+1(K ),

0 otherwise.

.

Spectral Clustering:

M =
1

k + 1
∆
−1/2
k Adual

k ∆
−1/2
k .

Label Propagation:

P =
1

k + 1
Adual
k ∆−1

k .
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Learning: Before and After Sparsification

Spectral Clustering:

Label Propagation:

Sourabh Palande TDA + ML 34 / 48



Discussion: Multidimensional Random Walks

Random walk on vertices:

Usually defined through edges.
Can also be defined through triangles.

Random walk on k-simplices:

through (k + j)-simplices.
through (k − j)-simplices.

Random walk spanning multiple dimensions.
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Discussion: Multilevel Sparsification

Sparsify at dimension k :

Copy (k − 1)-simplices.
Reduce number of k-simplices.

Theorem guarantees:

(1− ε)LK � LJ � (1 + ε)LK

Problem: Higher order simplices are broken.

How are up-Laplacians for dimension ≥ k + 1 affected?

Can we sparsify several dimensions, preserving spectra of
up-Laplacians at every dimension?
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Part 3

Ongoing Projects
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Sketching an Ensemble of Merge Trees

Motivation: Dataset is a large collection of trees.

Goals:

Compute a structural average of trees.

Compute a basis set of trees.

Approach: Adapt the Gromov-Wasserstein framework2.

Scalar field image taken from [YanWangMunch2020].

2Chowdhury and Needham 2019.
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Fréchet Mean and Basis
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Structural Variability in Graph Reduction

Motivation: Dataset is a collection of graphs output by different
graph reduction algorithms or by same randomized algorithm over
multiple runs.

Goal: Measure the structural variability in supervertices of the
reduced graphs for uncertainty quantification and visualization.

Approach:

Local similarity scores for vertices based on clustering
comparisons.

An alternative approach based on co-clustering probabilities.
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Graph Reduction
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Conclusion
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Summary
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Vision

Inputs: TDA for feature engineering

Topological summaries other than persistent homology

Learning: Algorithms that leverage topological structure

Topological optimization: Priors and constraints.

Output: Understanding / interpreting learned models

Understanding model behavior
Mapper to visualize parameter and activation spaces.
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