TDA + Machine Learning

Utilizing Topological Structures of Data for Machine Learning

Sourabh Palande

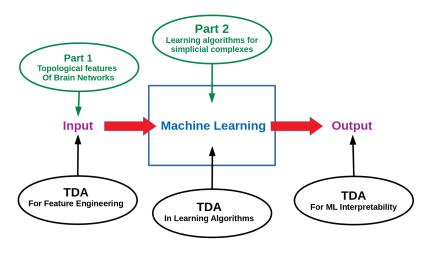
MSU TDA Seminar

October 26, 2020

< □ > < □ > < □ > < □ > < □ > < □ >

Vision

Goal: Integrating TDA into different stages of ML pipelines.



Soura	bh F	Palande

= 990

イロト 不得 トイヨト イヨト

Overview of the Talk

TDA for Brain Networks.

- **()** Statistical Inference with β_0 curves.
- **2** Regression with persistence diagrams.
- Olassification with persistence diagrams.
- Spectral Algorithms for Simplicial Complexes.
 - Spectral sparsification.
 - Learning algorithms (spectral clustering, label propagation).
 - Sandom walks on Simplicial Complexes.
- Ongoing Projects.
- Conclusion.

Part 1

Machine Learning with Topological Features of Brain Networks

Sourabh Palande

TDA + ML

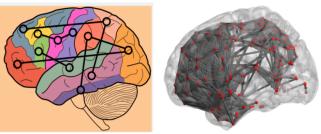
イロト イヨト イヨト イヨト

4 / 48

Motivation: Each data point is a network.

Structural Brain Networks

Functional Brain Networks



Approach: Extract topological features from brain networks and use them for machine learning.

Contributions

- Statistical inference for structural brain networks.
- Predicting behavioral measures with functional brain networks.
- Classifying functional brain networks.

	Soura	bh Pal	lande
--	-------	--------	-------

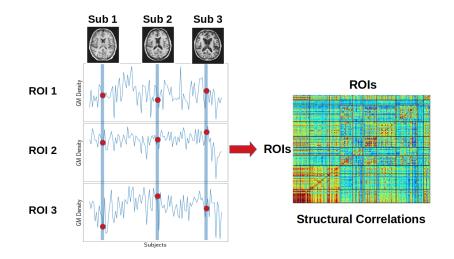
・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト

Topological Features

Brain Networks Persistent Homology (4.2,5.6) 💿 (0, 3.7) (0, 3.2) (0, 3) (0, 2.5) ^(c) • : • : • . · Kernels Projection layer for NN (p_2, q_2) (p_1, q_1) λ_2 **Persistence Landscapes Persistence Images**

< □ > < □ > < □ > < □ > < □ >

Structural Brain Networks

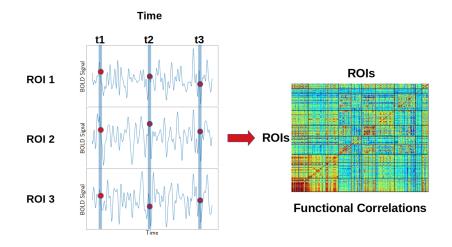


Encode shared structural influences across a group of subjects.

7 / 48

Functional Brain Networks

Soura



Encode level of synchronicity across time (for a single subject).

bh Palande	TDA + ML

8 / 48

 β_0 : # Connected Components.

 β_0 Curve: Changes in connectivity across a sequence of thresholds.

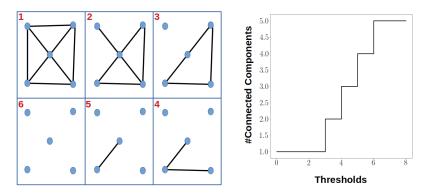


Figure: Graph filtration to compute β_0 curve.

Soura	bh Pa	lande
-------	-------	-------

Persistent Homology

Tracks changes in topology across multiple scales.

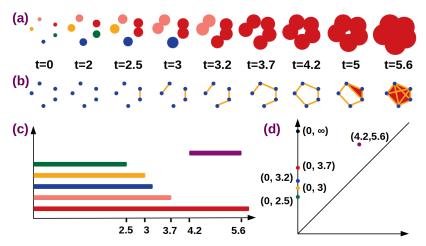


Figure: (a, b) Persistent homology computation, (c) Persistence barcode, and (d) Persistence diagram.

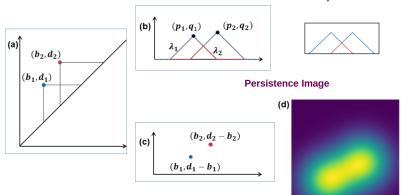
Sourabh Palande

TDA + ML

10 / 48

Persistent Homology: Representations

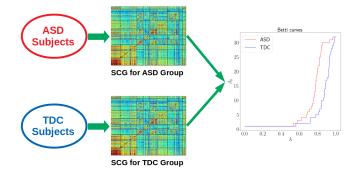
Transform persistence diagrams to vectorizable representations.



Persistence Landscapes

< 回 > < 三 > < 三 >

Statistical Inference with Structural Networks

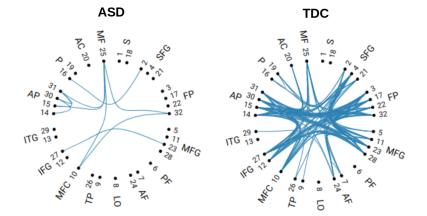


- Permutation, Bootstrap tests.
 - Test statistic: Largest gap between β_0 curves.

Main Result: Evidence of abnormalities in gray matter regions associated with Salience Network (SN). [BrainCon2019]

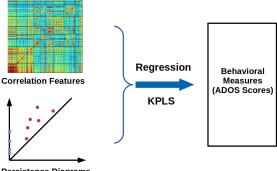
Statistical Inference with Structural Networks

Difference between ASD and TDC at max-gap threshold for SN.



▲ 同 ▶ → 三 ▶

Relating Functional Networks to Behavioral Measures



Persistence Diagrams

Method: Kernel Partial Least Squares Regression (KPLS).

Main result: The model augmenting correlations with topological features has the best predictive power and it is the only model that shows statistically significant improvement over other models. [ISBI2016]

Soura	bh Pa	lande

- Correlation features: Linear kernel (K^{cor}).
- Persistence Diagrams: Scale-space kernel Reininghaus, Huber, Bauer, and Kwitt 2015 (K^{TDA}).

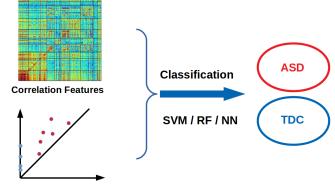
• Combined kernels (
$$K^{\text{TDA}+\text{cor}}$$
):

$$\mathcal{K}^{\mathrm{TDA+cor}} = w_0 \mathcal{K}^{\mathrm{TDA}_0} + w_1 \mathcal{K}^{\mathrm{TDA}_1} + (1 - w_0 - w_1) \mathcal{K}^{\mathrm{cor}}.$$

Best result with $w_0 = 0.10$, $w_1 = 0.40$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

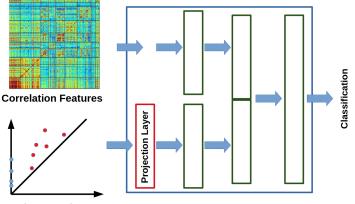
Autism Classification with Functional Networks



Persistence Diagrams

イロト イボト イヨト イヨト

Autism Classification with Functional Networks



Persistence Diagrams

Projection layer: Hofer et al.¹

Model	CC200	CC400	Model	CC200	CC400	Model	CC200	CC400
SVM _{Corr}	65.41	66.33	-	-	-	-	-	-
RF_{Corr}	64.81	63.92	-	-	-	-	-	-
NN3 _{Corr}	68.35	63.92	-	-	-	-	-	-
NN5 _{Corr}	68.46	65.58	-	-	-	-	-	-
NN7 _{Corr}	67.10	62.06	-	-	-	-	-	-
SVM_{PD}	53.03	53.69	SVM_{PI}	54.54	53.76	SVM_{PL}	53.03	53.69
RF_{PD}	-	-	RF_{PI}	52.25	53.04	RF_{PL}	52.51	53.12
$NN3_{PD}$	56.06	55.90	$NN3_{PI}$	58.56	56.10	$NN3_{PL}$	55.36	54.24
$NN5_{PD}$	56.15	56.04	NN5 _{P1}	59.09	57.39	$NN5_{PL}$	55.18	55.72
$NN7_{PD}$	55.48	54.33	$NN7_{PI}$	56.75	55.58	$NN7_{PL}$	54.85	53.67
$SVM_{PD+Corr}$	65.86	63.36	SVM _{PI+Corr}	64.25	62.68	$SVM_{PL+Corr}$	65.65	64.12
NN3 _{PD+Corr}	69.19	67.84	NN3 _{PI+Corr}	67.2	67.02	NN3 _{PL+Corr}	68.5	66.76
NN5PD+Corr	68.20	66.03	NN5 _{PI+Corr}	66.87	66.23	NN5 _{PL+Corr}	67.45	66.48
NN7 _{PD+Corr}	64.47	61.25	NN7 _{PI+Corr}	65.10	64.16	NN7 _{PL+Corr}	67.02	65.26

	RF _{Corr}	SVM _{Corr}	$SVM_{PD+Corr}$	NN3 _{Corr}			
SVM _{Corr}	0.1502						
$SVM_{PD+Corr}$	0.1943	0.4213			Kernel SVM	CC-200	CC-400
NN3 _{Corr}	0.0461	0.0480	0.0631		Ks	53.03	53.69
$NN3_{PD+Corr}$	0.0406	0.0446	0.0414	0.1894	$K_S + Corr$	65.86	63.36
	RF_{Corr}	SVM_{Corr}	$SVM_{PI+Corr}$	$NN3_{Corr}$	K_G	52.51	53.12
SVM _{PI+Corr}	0.1943	0.4213			K_G + Corr	62.98	61.41
NN3 _{Corr}	-	-	0.0420		K_W	55.36	54.24
NN3 _{PI+Corr}	0.0493	0.0763	0.0734	0.7432	$K_W + Corr$	64.73	64.12
	RF _{Corr}	SVM_{Corr}	$SVM_{PL+Corr}$	NN3 _{Corr}	K_F	55.18	55.72
SVM _{PL+Corr}	0.1623	0.3513			$K_F + Corr$	61.48	60.25
NN3 _{Corr}	-	-	0.0581				
NN3 _{PL+Corr}	0.0467	0.0683	0.0717	0.3524			

Main Results:

- Hybrid models typically outperform.
- Best accuracy: 69.19% (3-layer hybrid NN).
- Improvement is not always statistically significant.

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Part 2

Spectral Algorithms for Simplicial Complexes

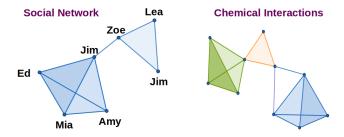
Sourabh Palande

 $\mathsf{TDA} + \mathsf{ML}$

≣ 19 / 48

<ロト < 四ト < 三ト < 三ト

Motivation: Data modeled as a simplicial complex

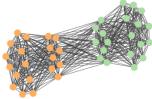


Approach: Leverage topological structures encoded by higher order interactions in machine learning algorithms.

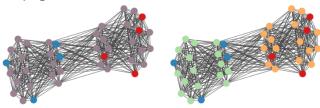
Contributions

- Label propagation and spectral clustering algorithms for simplicial complexes.
- Spectral sparsification algorithm for simplicial complexes.
- Some perspectives on random walks on simplicial complexes.

Graphs

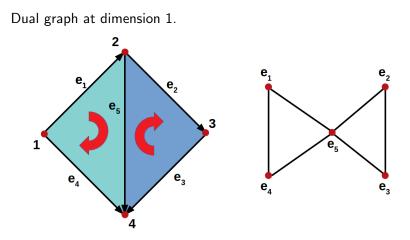


Label Propagation



TDA + ML

<ロト < 四ト < 三ト < 三ト



Edges in SC become vertices in dual graph.

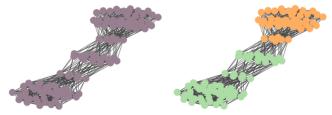
If edges in SC share a triangle, vertices in dual graph are connected.

Soura	bh Pa	alande

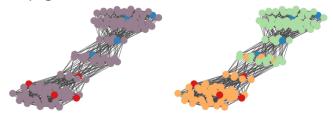
< A > < A > <

Simplicial Complexes

Spectral Clustering



Label Propagation



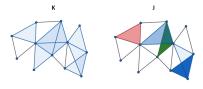
A (1) > A (2) > A

Sparsification: Preserving Spectral Properties

Graphs:

$$(1-\epsilon)L_G \preceq L_H \preceq (1+\epsilon)L_G.$$

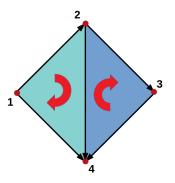
Simplicial Complexes:



 $(1-\epsilon)\mathcal{L}_{K} \preceq \mathcal{L}_{I} \preceq (1+\epsilon)\mathcal{L}_{K}.$ $(1-\epsilon)x^{T}\mathcal{L}_{K}x \leq x^{T}\mathcal{L}_{J}x \leq (1+\epsilon)x^{T}\mathcal{L}_{K}x.$

Simplicial Complex: Definitions, Notation

- Oriented simplicial complex K: Every simplex is oriented.
- *n_k*: Number of *k*-simplices.
- S_k : set of all k-simplices in K. w_f : weight of simplex $f \in K$.
- W_k : diagonal matrix, $W_k(f, f) = w_f$ where $f \in S_k$.

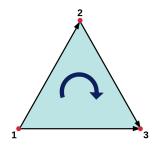


$$V = \{1, 2, 3, 4\}, E = \{12, 23, 34, 14, 24\}, T = \{124, 234\}.$$

Simplicial Complex: Incidence, up-Adjacency

 D_k : Incidence matrix $(\mathbb{R}^{n_{k+1}} \times \mathbb{R}^{n_k})$.

$$D_k(i,j) = \begin{cases} 0 & \text{if } \sigma_j^k \text{ is not on the boundary of } \sigma_i^{k+1}, \\ 1 & \text{if orientation of } \sigma_j^k \text{ agrees with the} \\ & \text{orientation induced by } \sigma_i^{k+1}, \\ -1 & \text{if orientation of } \sigma_j^k \text{ does not agree with the} \\ & \text{orientation induced by } \sigma_i^{k+1}. \end{cases}$$



 A_k^{up} : *up*-Adjacency matrix ($\mathbb{R}^{n_k} \times \mathbb{R}^{n_k}$).

$$A_{k}^{\rm up}(i,j) = \begin{cases} -w_{f} \quad \sigma_{i} \text{ and } \sigma_{j} \text{ are both faces of the same } (k+1)\text{-simplex } f \in S_{k+1}(K) \\ \text{ and both agree or disagree with the orientation of } f, \\ w_{f} \quad \sigma_{i} \text{ and } \sigma_{j} \text{ are both faces of the same } (k+1)\text{-simplex } f \in S_{k+1}(K) \\ \text{ and either } \sigma_{i} \text{ or } \sigma_{j} \text{ (but not both) agree with the orientation of } f, \\ 0 \quad \text{ if } \sigma_{i} \text{ and } \sigma_{j} \text{ are not faces of the same } (k+1)\text{-simplex } f \\ \text{ for any } f \in S_{k+1}(K) \text{ .} \end{cases}$$

• deg(σ_i): Degree of a k-simplex σ_i :

$$\deg(\sigma_i) = \sum_{\substack{f \in S_{k+1} \\ \sigma_i \subset f}} w_f.$$

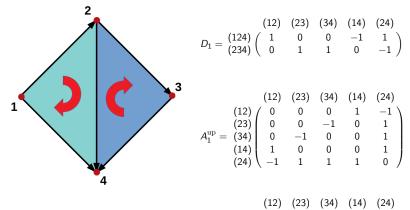
- Δ_k : Degree matrix $(\mathbb{R}^{n_k} \times \mathbb{R}^{n_k})$, $\Delta_k(i, i) = \deg(\sigma_i)$.
- The *k*-dimensional up-Laplacian is:

$$\mathcal{L}_{k}^{\mathrm{up}} = W_{k}^{-1} \left(D_{k}^{\mathsf{T}} W_{k+1} D_{k} \right),$$

$$=W_{k}^{-1}\left(\Delta_{k}-A_{k}^{\mathrm{up}}\right) .$$

< □ > < 同 > < 回 > < 回 > < 回 >

Running Example



< • • • • •

< 注)< 注)< 注) 注) 注 シ 三 の 28 / 48

Sourabh Palande

• $(\mathcal{L}_{k-1}^{up})^+$: Moore-Penrose pseudoinverse.

$$egin{aligned} & R_k = D_{k-1} (\mathcal{L}_{k-1}^{ ext{up}})^+ D_{k-1}^T \ & = D_{k-1} \left(W_{k-1}^{-1} D_{k-1}^T W_k D_{k-1}
ight)^+ D_{k-1}^T. \end{aligned}$$

- Generalized effective resistance of k-simplex $f = R_k(f, f)$.
- In case of graphs: Effective resistance is the voltage drop between vertices for a unit current.

< □ > < □ > < □ > < □ > < □ > < □ >

Algorithm 1: J = Sparsify(K, k, q)

Data: A weighted, oriented simplicial complex K, dimension k (where $1 \le k \le \dim K$), and an integer q. **Result:** A weighted, oriented simplicial complex J which is sparsified at dimension k, with equivalent (k-1)-skeleton to K and $\dim J = k$. $J := K^{(k-1)}$

Sample *q k*-dimensional simplices independently with replacement according to the probability

$$p_f = \frac{w(f)R_k(f,f)}{\sum_f w(f)R_k(f,f)},$$

and add sampled simplices to J with weight $w(f)/qp_f$. If a simplex is chosen more than once, the weights are summed.

	Soura	bh P	alanc	le
--	-------	------	-------	----

・ロト ・四ト ・ヨト ・ヨト

Graph: Spectral Clustering (NJW)

Algorithm 2: $y = Cluster(G, d)^a$

Data: G(V, E, W): A weighted, undirected graph with |V| = n, d: the number of clusters

Result: y: A vector of cluster assignments $l \in \{1, 2, ..., d\}$ for the vertices of G.

Construct matrix A, A(i, j): weight of edge $e_{i,j}$. Compute diagonal matrix D, $D(j, j) = \sum_i A(i, j)$. Compute M = $D^{-1/2}AD^{-1/2}$.

Construct matrix $X = [u_1 u_2 \cdots u_d] \in \mathbb{R}^{n \times d}$ where u_i 's are the eigenvectors corresponding to the *d* largest eigenvalues of *M* (chosen to be orthogonal to each other in the case of repeated eigenvalues).

$$\begin{split} Y_{ij} &= X_{ij} / \left(\sum_{j} X_{ij}^2 \right)^{1/2} \text{ (normalize rows of } X \text{ to unit length).} \\ y &= \text{kMeans}(Y, d). \end{split}$$

Return y as cluster assignments for vertices of G.

イロト 不得 トイラト イラト 一日

^aNg, Jordan, and Weiss 2001.

Graph: Label Propagation (ZG)

Algorithm 3: $y = PropagateLabels(G, y_I)$

- ^a **Data:** G(V, E, W): A weighted, undirected graph with |V| = n, y₁: A vector containing labels $\in \{+1, -1\}$ of first *I* vertices.
- **Result:** y: A vector of label assignments $l \in \{+1, -1\}$ for all the vertices of G.

Construct matrix A, A(i,j): weight of edge $e_{i,j}$. Compute diagonal matrix D, $D(j,j) = \sum_i A(i,j)$. $P = AD^{-1}$.

Initialize
$$y^{(0)} = (y_1, 0), t = 0.$$

Repeat until convergence:

$$y^{(t+1)} = Py^{(t)},$$

 $y_l^{(t+1)} = y_l^{(t)}.$

Return $sgn(y^{(t)})$ as label assignments for vertices of G.

^aZhu and Ghahramani 2002.

Sourabh Palande

TDA + ML

32 / 48

(日)

Learning Algorithms for Simplicial Complex

We perform learning on the dual graph at dimension k.

$$A_k^{\text{dual}}(i,j) = \begin{cases} w_f & \sigma_i \text{ and } \sigma_j \text{ are both faces} \\ & \text{of the same } (k+1)\text{-simplex } f \in S_{k+1}(K), \\ 0 & \text{otherwise.} \end{cases}$$

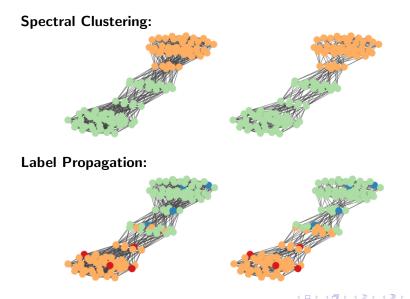
Spectral Clustering:

$$M=rac{1}{k+1}\Delta_k^{-1/2}A_k^{\mathsf{dual}}\Delta_k^{-1/2}.$$

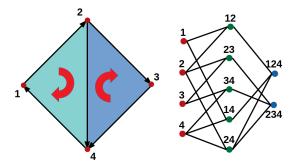
Label Propagation:

$$P=rac{1}{k+1}A_k^{\mathsf{dual}}\Delta_k^{-1}.$$

Learning: Before and After Sparsification



Discussion: Multidimensional Random Walks



- Random walk on vertices:
 - Usually defined through edges.
 - Can also be defined through triangles.
- Random walk on *k*-simplices:
 - through (k+j)-simplices.
 - through (k j)-simplices.
- Random walk spanning multiple dimensions.

Soura	bh F	aland	le

Discussion: Multilevel Sparsification

- Sparsify at dimension k:
 - Copy (k-1)-simplices.
 - Reduce number of *k*-simplices.
- Theorem guarantees:

$$(1-\epsilon)\mathcal{L}_{K} \preceq \mathcal{L}_{J} \preceq (1+\epsilon)\mathcal{L}_{K}$$

- Problem: Higher order simplices are broken.
- How are up-Laplacians for dimension $\geq k + 1$ affected?
- Can we sparsify several dimensions, preserving spectra of up-Laplacians at every dimension?

36 / 48

Part 3

Ongoing Projects

Sourabh Palande

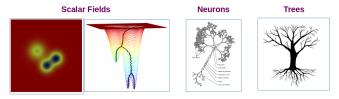
 $\mathsf{TDA} + \mathsf{ML}$

37 / 48

イロト イヨト イヨト イヨト

Sketching an Ensemble of Merge Trees

Motivation: Dataset is a large collection of trees.



Goals:

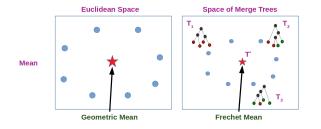
- Compute a structural average of trees.
- Compute a basis set of trees.

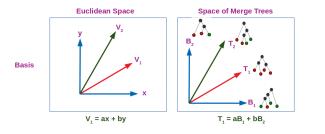
Approach: Adapt the Gromov-Wasserstein framework².

Scalar field image taken from [YanWangMunch2020].

²Chowdhury and Needham 2019.

Fréchet Mean and Basis





TDA + ML

イロト イヨト イヨト イヨト

Structural Variability in Graph Reduction

Motivation: Dataset is a collection of graphs output by different graph reduction algorithms or by same randomized algorithm over multiple runs.



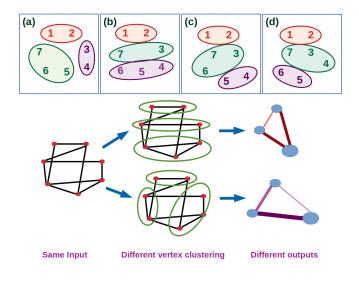
Goal: Measure the structural variability in supervertices of the reduced graphs for uncertainty quantification and visualization.

Approach:

- Local similarity scores for vertices based on clustering comparisons.
- An alternative approach based on co-clustering probabilities.

< 回 > < 三 > < 三 >

Graph Reduction



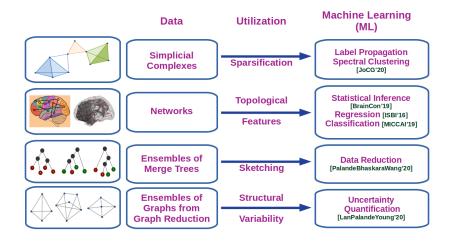
Sourabh Palande	oural	oh Pa	lande
-----------------	-------	-------	-------

TDA + ML

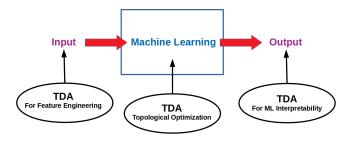
・ロト ・ 日 ト ・ 日 ト ・ 日 ト

Conclusion

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─ のへで



イロト イボト イヨト イヨト



- Inputs: TDA for feature engineering
 - Topological summaries other than persistent homology
- Learning: Algorithms that leverage topological structure
 - Topological optimization: Priors and constraints.
- Output: Understanding / interpreting learned models
 - Understanding model behavior
 - Mapper to visualize parameter and activation spaces.

[JoCG2020]: Braxton Osting, Sourabh Palande, and Bei Wang. "Spectral sparsification of simplicial complexes for clustering and label propagation.". Journal of Computational Geometry (JoCG), to appear. 2020

[BrainCon2019]: Sourabh Palande, Vipin Jose, Brandon Zielinski, Jeffrey Anderson, P. Thomas Fletcher, and Bei Wang. "Revisiting abnormalities in brain network architecture underlying autism using topology-inspired statistical inference.". In: Brain Connectivity 9.1 (2019), pp. 13–21

[MICCAI2019]: Archit Rathore, Sourabh Palande, Jeffrey Anderson, Brandon Zielinski, P. Thomas Fletcher, and Bei Wang. "Autism classification using topological features and deep learning: a cautionary tale." In: *Medical Image Computing and Computer Assisted Intervention (MICCAI)*. Springer International Publishing, 2019, pp. 736–744

[ISBI2016]: Eleanor Wong, Sourabh Palande, Bei Wang, Brandon Zielinski, Jeffrey Anderson, and P. Thomas Fletcher. "Kernel partial least squares regression for relating functional brain network topology to clinical measures of behavior". In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). IEEE, 2016, pp. 1303–1306. DOI: 10.1109/isbi.2016.7493506

イロト イポト イヨト イヨト

Samir Chowdhury and Tom Needham. "Gromov-wasserstein averaging in a riemannian framework". preprint, arXiv:1910.04308. 2019.

Christoph Hofer, Roland Kwitt, Marc Niethammer, and Andreas Uhl. "Deep learning with topological signatures". In: Advances in Neural Information Processing Systems (2017), pp. 1634–1644.

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. "On spectral clustering: Analysis and an algorithm". In: *Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and Synthetic.* NIPS'01. Vancouver, British Columbia, Canada: MIT Press, 2001, pp. 849–856.

< □ > < □ > < □ > < □ > < □ > < □ >

ī.

Braxton Osting, Sourabh Palande, and Bei Wang. "Spectral sparsification of simplicial complexes for clustering and label propagation.". Journal of Computational Geometry (JoCG), to appear. 2020.

Sourabh Palande, Vipin Jose, Brandon Zielinski, Jeffrey Anderson, P. Thomas Fletcher, and Bei Wang. "Revisiting abnormalities in brain network architecture underlying autism using topology-inspired statistical inference.". In: *Brain Connectivity* 9.1 (2019), pp. 13–21.

Archit Rathore, Sourabh Palande, Jeffrey Anderson, Brandon Zielinski, P. Thomas Fletcher, and Bei Wang. "Autism classification using topological features and deep learning: a cautionary tale.". In: *Medical Image Computing and Computer Assisted Intervention (MICCAI)*. Springer International Publishing, 2019, pp. 736–744.

(日)

References III

Jan Reininghaus, Stefan Huber, Ulrich Bauer, and Roland Kwitt. "A stable multi-scale kernel for topological machine learning". In: *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition* (2015), pp. 4741–4748.

Eleanor Wong, Sourabh Palande, Bei Wang, Brandon Zielinski, Jeffrey Anderson, and P. Thomas Fletcher. "Kernel partial least squares regression for relating functional brain network topology to clinical measures of behavior". In: 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI). IEEE, 2016, pp. 1303–1306. DOI: 10.1109/isbi.2016.7493506.

Xiaojin Zhu and Zoubin Ghahramani. *Learning from labeled and unlabeled data with label propagation*. Tech. rep. CMU-CALD-02-107. Carnegie Mellon University, 2002.

・ロト ・ 同ト ・ ヨト ・ ヨト